3.4 Ambiente biológico

3.4.1 Ecosistema Regional

El área de estudio se localiza en la costa norte del Perú, la cual se caracteriza por una marcada aridez, con valores de precipitación menores a 200 mm, sin embargo, durante años con ocurrencia del Evento El Niño (ENSO) los valores se incrementan hasta alcanzar valores cercanos a 1000 mm (Bernez de Falen & Revesz 1988). El desierto de Sechura experimenta eventos episódicos severos de precipitaciones e inundaciones como consecuencia de anomalías positivas extremas. Debido al ENSO, el área de estudio presenta la variabilidad más alta de precipitación anual de toda Suramérica y probablemente incluso de la Tierra (Caviedes, 1988; Goldberg et al., 1987). Durante el denominado «Super Niño» la desviación de la precipitación media en años no-ENSO puede sobrepasar el 9000%, tal como se ha observado en Talara en el lapso 1997/98 (Erdmann et al. 2008).

Esta área está dominada por un bosque seco que mayormente está dominado por el algarrobo (*Prosopis pallida*), por lo que es denominado como "algarrobal" por algunos autores y está caracterizado estructuralmente como sabana y considerado en la zona de vida de desierto superárido tropical (Brack 1986, Mostacero et al. 1996, Ferreyra 1983, Weberbauer 1945). También presenta áreas con muchas dunas donde la especie dominante es al sapote (*Colicodendron scabridum*), por lo que algunos autores la denominan "sapotal". En el presente estudio se utiliza los nombres Bosque seco con predominio de algarrobo (BSPA) para el "algarrobal" y Bosque seco con predominio de sapote (BSPS) para el "sapotal". Adicionalmente, en el ámbito del estudio, se presentan una vegetación asociada a las fuentes de agua, la cual por la naturaleza salobre de las mismas está formada por plantas halófitas, siguiendo a Weberbauer (1945) se ha denominado a estas unidades como Vegetación halófita de playas marinas (VHPM) y Vegetación halófita de riberas de ríos o lagunas (VHRR).

El plano **830MA001A-010-20-022** identifica las zonas de vida identificadas en el área que ocupa el presente Proyecto.

3.4.2 Ecosistema Terrestre

3.4.2.1 Flora

3.4.2.1.1 Introducción

La información base de las características de la flora y vegetación de un área es necesaria para el futuro establecimiento de cualquier proyecto de desarrollo. Esta necesidad parte tanto de la legislación que norma los requerimientos para la ejecución de proyectos, como por la importancia intrínseca que presenta la vegetación como matriz biológica para el desarrollo de los demás componentes vivos del ecosistema.

La vegetación es la base de la producción de energía y materia orgánica en el ecosistema, conformando la base de la pirámide trófica y el principal recurso estructural y alimentario para la fauna. La vegetación es también un excelente indicador de las condiciones ambientales a largo y mediano término, debido a que responde directamente de las condiciones del sitio donde se establece al no poder desplazarse.

La evaluación de las características de la vegetación dentro del área de influencia del proyecto permitirá identificar los potenciales impactos que ocasionarían las actividades del mismo, posibilitando la elaboración de estrategias para la mitigación o idealmente, eliminación de los riesgos de daños e impactos ambientales.

3.4.2.1.2 Objetivos

Los objetivos del presente estudio son:

- Evaluación de la composición florística del ámbito de estudio
- Descripción de la vegetación presente en el ámbito de estudio
- Determinación de las especies de flora de particular importancia en conservación.

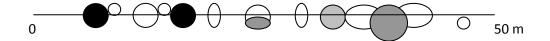
3.4.2.1.3 Métodos

A. Evaluación de información previa

El primer paso para el estudio fue el examen de toda la información publicada sobre el área de estudio, además se utilizó imágenes remotas del área para determinar las características generales del ambiente. Con estos insumos se hizo una lista de especies potenciales y se establecieron las principales zonas donde evaluar la flora y vegetación.

B. Trabajo de campo

El trabajo de campo incluyó dos acercamientos complementarios, el primero cualitativo que trato de documentar la flora presente y el segundo cuantitativo que registró los principales parámetros comunitarios de la vegetación.


b.1) Evaluación cualitativa

Consistió en el registro de todas las especies de flora presentes dentro del área de influencia del proyecto, para lo cual se recorrió lo más intensivamente posible cada sitio de muestreo dentro y fuera de las parcelas cuantitativas, con observaciones generales sobre el tipo de sustrato y vegetación (Womersley, 1981).

b.2) Evaluación cuantitativa

Para la evaluación cuantitativa se utilizó un diseño muestral estratificado selectivo, donde las parcelas evaluadas fueron seleccionadas como representativas de cada tipo de unidad de vegetación. Adicionalmente, se escogió aquellas áreas donde se probablemente se establecerían alguna edificación del proyecto.

Para las unidades de vegetación herbácea se utilizó el método de intersección línea (Arana 2007, Mateucci & Colma 1982) el cual consiste en medir cuantos centímetros son intersectados por una planta de una determinada especie en una línea de 50 m. De manera que 5000 cm equivale al 100%, la cobertura de cada especie se calcula como el número de centímetros interceptados por ella entre los 5000 cm por 100. Un esquema del muestreo se observa en el siguiente esquema.

Para las unidades de vegetación arbórea se utilizó el método de parcelas de 50x2 m, lo cual permitió examinar la abundancia (número de individuos), cobertura, diversidad y características estructurales de la unidad. Adicionalmente se obtuvieron datos de área basal y volumen de madera, para establecer sus principales características productivas. El plano 830MA0001A-010-20-023 presenta los puntos de muestreo y los transectos seguidos para la evaluación del componente flora.

b.3) Análisis de información

Con los datos obtenidos en el campo se calcularon los valores de cobertura, abundancia, diversidad y datos de áreas basales y volúmenes de madera. Para el caso de las hierbas sólo se utilizó la cobertura como medida de abundancia,

debido a que es imposible el registro de individuos por la forma de crecimiento que presentan.

La cobertura fue calculada con la fórmula:

% COBERTURA (sp a) =
$$\frac{\sum cm \text{ intersectados en plantas de la especie a}}{total \text{ de cm de la línea (5000 cm)}} x \text{ 100}$$

La abundancia en las especies arbóreas fue calculada por el número de individuos registrados dentro de cada parcela.

La diversidad de especies fue calculada utilizando los índices de Shannon-Wiener (H') y de Simpson (1-D), además se calculó la equitabilidad (E):

$$H' = -\sum_{i} Log_{2}p_{i} \times p_{i}$$

$$1 - D = \sum_{i} p_{i}^{2}$$

$$E = \frac{H'}{Log_{2}S}$$

Dónde:

S= número de especies presentes en la parcela

$$p_i = \frac{n_i}{N}$$

n_i = número de individuos de la especie i

N= número total de individuos en la parcela

Los valores de área basal y volumen de madera fueron calculados utilizando los datos de perímetro del tronco y de las ramas, así como altura de fuste y copa; este acercamiento aunque no es exacto permite calcular la cantidad de recurso leña por área, presente en el ámbito del estudio.

Las fórmulas utilizadas fueron:

 $Voumen\ total\ de\ madera = \left(\'{A}rea\ basal\ \times Altura\ del\ tronco \right) + \sum \'{a}reas\ de\ ramas\ \times longitud\ promedio\ de\ ramas$

3.4.2.1.4 Resultados

A. Descripción general de la flora y vegetación

La región de Sechura ha sido visitada por diversos autores desde hace mucho tiempo atrás, como Raimondi (1901), Weberbauer (1945), Ferreyra (1979, 1983), Mostacero y colaboradores (1996), Gálvez y colaboradores (2006), los últimos autores encontraron un total de 12 especies de plantas, lo cual se explica porque no consideraron las comunidades de hierbas halófitas.

En general la vegetación del área puede ser considerada en dos grandes tipos, los bosques secos predominantes en el paisaje y los pequeños parches de vegetación halófita asociada a las fuentes de agua en la zona. No se registró cambios estacionales importantes, por lo que no se realiza un análisis estacional de la flora y vegetación.

B. Composición florística

La flora del ámbito de estudio está representada por 28 especies de plantas vasculares (cuadro 3.4.2.1-1) un número esperado debido a la aridez del ambiente evaluado. La gran mayoría de las especies pertenecen a la clase Magnoliopsida (=dicotiledóneas) con 21 especies y con sólo ocho especies de Liliopsida (=monocotiledóneas) principalmente en la vegetación ligada a cuerpos de agua (Ver figura 3.4.2.1-1).

Cuadro 3.4.2.1-1. Lista de especies de plantas vasculares presentes en el área de estudio.

Familia	Nombre científico	Nombre común
AIZOACEAE	Sesuvium portulacastrum (L.) L.	lejía verde, lito
AMARANTHACEAE	Alternanthera peruviana (Moquin) Suess.	hierba blanca
AMARANTHACEAE	Sarcocornia neei (Lag.) M.A. Alonso & M.B. Crespo	parachique
ASTERACEAE	Spilanthes leiocarpa DC.	turre macho
ASTERACEAE	Encelia sp.	
BATACEAE	Batis maritima L.	Vidrio
BORAGINACEAE	Heliotropium curassavicum L.	hierba alacrán
BORAGINACEAE	Tiquilia dichotoma (R. & P.) Pers.	manito de ratón
BORAGINACEAE	Tiquilia paronychioides (F. Phil.) A.T. Richardson	flor de arena
CAPPARACEAE	Capparis avicennifolia Kunth	vichayo, bichayo
CAPPARACEAE	Colicodendron scabridum (Kunth) Seem.	Sapote
CYPERACEAE	Cyperus laevigatus L.	junquillo
CYPERACEAE	Bolboschoenus cf. maritimus (L.) Palla	
CYPERACEAE	Cyperus cf. elegans L.	junquillo
FABACEAE	Acacia aroma Gillies ex Hook. & Arn.	espino
FABACEAE	Acacia macracantha Humb. et Bonpl. ex Willd.	espino
FABACEAE	Cercidium praecox (Ruiz & Pav.) Harms subsp. praecox	palo verde
FABACEAE	Hoffmannseggia viscosa (Ruiz & Pav.) Hook. & Arn. var. viscosa	
FABACEAE	Prosopis pallida (Humb. & Bonpl. ex Willd.) Kunth	algarrobo
ONAGRACEAE	Ludwigia octovalvis (Jacq.) P.H. Raven	
PLANTAGINACEAE	Galvesia fruticosa Gmel.	curi
POACEAE	Aristida chiclayense Tovar	
POACEAE	Distichlis spicata (L.) Greene	grama salada
POACEAE	Sporobolus virginicus (L.) Kunth	grama salada
POACEAE	Poaceae sp1	
RHAMNACEAE	Scutia spicata (Humb. & Bonpl. ex Willd.) Weberb.	espino verde
SCROPHULARIACEAE	Bacopa monnieri (L.) Pennell	bacopa
VERBENACEAE	Lippia nodiflora (L.) Michx.	turre hembra

Liliopsida 25%

Magnoliopsida 76%

Figura 3.4.2.1-1. Porcentaje de especies de plantas por clases botánicas presentes en el ámbito de estudio

La familia botánica con mayor número de especies fue Fabaceae (= leguminosas), la familia del algarrobo con cinco especies, seguida de Poaceae (=gramíneas) con cuatro especies y por las Cyperaceae y Boraginaceae, ambas con tres especies (figura 3.4.2.1-2). Tres familias presentaron dos especies (Amaranthaceae, Asteraceae y Capparaceae), mientras que las siete restantes presentaron una sola especie (cuadro 3.4.2.1-1).

FABACEAE 5 **POACEAE** 4 **CYPERACEAE** 3 **BORAGINACEAE** Otras 13 0 2 6 10 12 14 Número de especies

Figura 3.4.2.1-2. Número de especies de plantas por familias botánicas con mayor riqueza específica en el ámbito de estudio

Estas 28 especies de plantas presentaron tres formas de crecimiento: árboles (plantas leñosas con un tronco principal y tamaño generalmente mayor a 3 m), arbustos (plantas leñosas sin un tronco principal notorio y tamaño generalmente menor a 3 m) y hierbas (plantas sin tejido leñoso). La mayoría de especies fueron hierbas (20 especies), seguidas de árboles y arbustos (figura 3.4.2.1-3).

presentes en el ambito de estudio

25
20
20
6
5
0
Hierbas Árboles Arbustos

Figura 3.4.2.1-3. Número de especies de plantas por formas de crecimiento presentes en el ámbito de estudio

La composición de la flora registrada en el área de estudio corresponde a lo esperado, si bien no existe una publicación que incluya exactamente esta zona, un trabajo general sobre flora y fauna del desierto (Gálvez et al. 2006) registra 12 especies de plantas con las Fabaceae como la familia con más especies. En el presente estudio se incluyen también las especies de vegetación halófita asociada al estuario Virrilá y a playas marinas por lo que el número de especies es mayor.

C. Unidades de vegetación

En el área de estudio se registraron cuatro unidades de vegetación que fueron denominadas siguiendo una nomenclatura modificada a partir de los clásicos trabajos de Weberbauer (1945) y Ferreyra (1979, 1983). Las unidades registradas son: vegetación halófita de playas marinas (VHPM), vegetación halófita de ribera de río o laguna (VHRR), bosque seco con predominio de algarrobo (BSPA) y bosque seco con predominio de sapote (BSPS) (figura 3.4.2.1-4), cada una con características comunitarias propias (figura 3.4.2.1-5). El plano 830MA0001A-010-20-024 detalla las formaciones vegetales encontradas para el área de estudio.

Figura 3.4.2.1-4. Número de especies de plantas por unidades de vegetación presentes en el ámbito de estudio (explicación de abreviaturas en el texto).

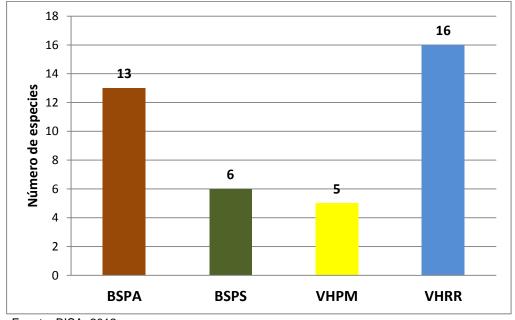
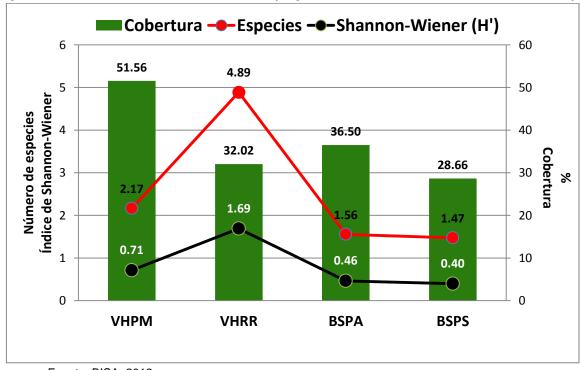



Figura 3.4.2.1-5. Parámetros comunitarios por unidades de vegetación presentes en el ámbito de estudio (explicación de abreviaturas en el texto)

c.1) Vegetación Halófita de Playas Marinas (VHPM)

La vegetación halófita está conformada por especies de plantas de diferentes familias filogenéticamente no relacionadas pero adaptadas a suelos con alto contenido de sal (Flowers et al. 2010). En el área de estudio esta vegetación se encuentra distribuida en las orillas arenosas o playas evaluadas, tanto en Parachique (desembocadura del estuario Virrilá) como en Vichayito.

Cinco especies fueron registradas en este tipo de vegetación (figura 3.4.2.1-5, cuadro 3.4.2.1-2), siendo la unidad con menor riqueza de especies, lo que se explica por las difíciles condiciones ambientales donde se desarrolla este tipo de plantas, en las orillas del mar.

Todas las especies son hierbas, suculentas (parachique, lito y vidrio) y graminoides (grama salada y ciperáceas), no alcanzan más de 0,8 m de altura y se distribuyen de manera fragmentada en zonas donde no alcanza la marea alta (figura 3.4.2.1-6).

Cuadro 3.4.2.1-2. Lista de especies de plantas vasculares presentes en la unidad de vegetación Halófita de Playas Marinas (VHPM)

	· · ·	•
Familia	Nombre científico	Nombre común
AIZOACEAE	Sesuvium portulacastrum (L.) L.	lejía verde, lito
AMARANTHACEAE	Sarcocornia neei (Lag.) M.A. Alonso & M.B. Crespo	parachique
BATACEAE	Batis maritima L.	vidrio
CYPERACEAE	Bolboschoenus cf. maritimus (L.) Palla	
POACEAE	Sporobolus virginicus (L.) Kunth	grama salada

Figura 3.4.2.1-6. Vegetación halófita de playas marinas en la playa Vichayito.

Esta unidad fue evaluada en las playas de la desembocadura de Virrilá (SM01) cuyas parcelas se muestran en el cuadro 3.4.2.1-3. Los datos de estas parcelas han sido utilizados para el análisis cuantitativo de esta unidad de vegetación.

El análisis cuantitativo permitió obtener información de cobertura total, diversidad de especies y equitabilidad en esta unidad de vegetación (cuadro 3.4.2.1-4). El número de especies por parcela promedio fue de 2.2, variando desde una hasta tres especies, mientras que la cobertura promedio alcanzo 51.6%, con valores entre 6,1 y 102,2% y la diversidad medida por el índice de Shannon-Wiener fue muy baja en promedio (H'= 0.712 bits/ind., entre 0 y 1.547 bits/ind.) al igual que la medida por el índice de Simpson (1-D= 0.293 probits en promedio). Estos valores bajos de diversidad se deben principalmente a la baja riqueza (=número) de especies y también a que en muchos caso hubo fuerte dominancia de una especie, lo que se puede observar en los bajos valores de equitabilidad (0,48 en promedio).

Cuadro 3.4.2.1-3. Parcelas y sitios de muestreo correspondiente a la unidad de vegetación Halófita de Playas Marinas (VHPM)

SITIO MUESTREO	LOCALIDAD	CODIGO	EASTING	NORTHING
SM01	Desembocadura de Virrilá	Ve-01	513890	9361530
		Ve-02	513937	9361536
		Ve-03	513935	9361486
		Ve-04	513908	9361544
		Ve-05	513935	9361535
		Ve-06	514040	9361612

En síntesis se puede decir que esta unidad de vegetación se caracteriza por una baja riqueza y diversidad de especies, pero con una cobertura media. En comparación con la otra unidad de vegetación herbácea (vegetación halófita de ribera de río o laguna) los valores de riqueza y diversidad fueron menores (figura 3.4.2.1-5), pero los valores de cobertura fueron los mayores de todas las unidades evaluadas (figura 3.4.2.1-5).

Cuadro 3.4.2.1-4. Parámetros comunitarios correspondientes a la unidad de vegetación Halófita de Playas Marinas (VHPM)

Sitio	Localidad	Doroolo	Especies	Cabartura	Shannon-	Simpson	Equitabilidad
Sitio	Localidad	Parcela	Especies	Cobertura	Wiener (H')	(1-D)	Equitabilidad
		Ve-01	2.0	52.96	0.2744	0.0900	0.2744
		Ve-02	2.0	102.18	0.7583	0.3421	0.7583
	Playa en la	Ve-03	1.0	98.80	0.0000	0.0000	0.0000
SM01	desembocadura	Ve-04	3.0	58.75	1.3687	0.5733	0.8635
	de Virrilá	Ve-05	3.0	82.25	0.7561	0.2646	0.4771
		Ve-06	3.0	58.43	1.4643	0.6089	0.9239
		Promedio	2.3	75.56	0.7703	0.3131	0.5495

c.2) Vegetación Halófita de Ribera de Ríos o Lagunas (VHRR)

Esta unidad de vegetación surge debido a que las condiciones del estuario Virrilá y lagunas aledañas a La Niña, presentan condiciones salobres, como en la mayoría de humedales costeros. En el área de estudio esta vegetación se encuentra distribuida en las orillas del estuario Virrilá y en algunas lagunas pequeñas al sur de La Niña.

Dieciséis especies fueron registradas en este tipo de vegetación (figura 3.4.2.1-5, cuadro 3.4.2.1-5), siendo la unidad con mayor riqueza de especies, lo que se explica por las condiciones hídricas favorables en un ambiente rodeado de amplias zonas desérticas.

La mayoría de las especies son hierbas, suculentas (parachique, lito y vidrio) y graminoides (grama salada y ciperáceas), con no más de 1 m de altura, dos especies fueron árboles pero en su mayor parte se trataron de plántulas o plantones de menos de 1.5 m de alto (figura 3.4.2.1-7). Esta unidad de vegetación se distribuye de manera relativamente homogénea alrededor del estuario y orillas de las lagunitas al sur de La Niña, pero está representada por diferentes estadios sucesionales dependiendo de la cercanía a la orilla (figura 3.4.2.1-8).

Cuadro 3.4.2.1-5. Lista de especies de plantas vasculares presentes en la unidad de vegetación Halófita de Riberas de Ríos o Lagunas (VHRR).

		-
Familia	Nombre científico	Nombre común
AIZOACEAE	Sesuvium portulacastrum (L.) L.	lejía verde, lito
AMARANTHACEAE	Sarcocornia neei (Lag.) M.A.Alonso & M.B.Crespo	parachique
ASTERACEAE	Spilanthes leiocarpa DC.	turre macho
BATACEAE	Batis maritima L.	vidrio
BORAGINACEAE	Heliotropium curassavicum L.	hierba alacrán
	Bolboschoenus cf. maritimus (L.) Palla	
CYPERACEAE	Cyperus cf. elegans L.	junquillo
	Cyperus laevigatus L.	junquillo
	Acacia macracantha Humb. et Bonpl. ex Willd.	espino
FABACEAE	Prosopis pallida (Humb. & Bonpl. ex Willd.) Kunth	algarrobo

Familia	Nombre científico	Nombre común
ONAGRACEAE	Ludwigia octovalvis (Jacq.) P.H. Raven	
	Distichlis spicata (L.) Greene	grama salada
POACEAE	Poaceae sp1	
	Sporobolus virginicus (L.) Kunth	grama salada
SCROPHULARIACEAE	Bacopa monnieri (L.) Pennell	bacopa
VERBENACEAE	Lippia nodiflora (L.) Michx.	turre hembra

Figura 3.4.2.1-7. Número de especies de plantas por formas de crecimiento presentes en la vegetación halófita de la ribera de ríos o lagunas

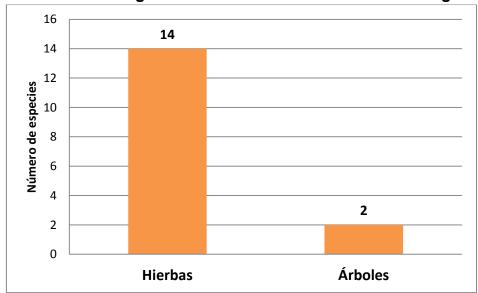


Figura 3.4.2.1-8. Vegetación halófita de ribera de ríos o lagunas en la orilla del estuario Virrilá.

Esta unidad fue evaluada en tres sitios de muestreo, dos en las orillas del estuario de Virrilá, el sitio SM02 (cerca la desembocadura) y SM08 (cerca al inicio del estuario). El otro sitio fue el SM16 a las orillas de las lagunas al sur de la laguna La Niña. En total se evaluaron nueve parcelas (cuadro 3.4.2.1-6). Los datos de estas parcelas han sido utilizados para el análisis cuantitativo de esta unidad de vegetación.

Cuadro 3.4.2.1-6. Parcelas y sitios de muestreo correspondiente a la unidad de vegetación Halófita de Riberas de Ríos o Lagunas (VHRR).

SITIO MUESTREO	LOCALIDAD	CODIGO	EASTING	NORTHING
SM02		Ve-07	513895	9358902
	Estuario Virrilá	Ve-08	513919	9358847
		Ve-09	513976	9358689
		Ve-10	514099	9358516

SITIO MUESTREO	LOCALIDAD	CODIGO	EASTING	NORTHING
		Ve-11	514248	9357865
		Ve-12	514424	9357984
SM08	Orilla izquierda Virrilá	Ve-35	523507	9352012
Siviuo		Ve-36	523621	9344634
SM16	Línea transmisión Eléctrica proyectada 138Kv	Ve-73	540855	9341566

De manera similar a la anterior unidad, este análisis cuantitativo permitió obtener información de cobertura total, diversidad de especies y equitabilidad en esta unidad de vegetación (cuadro 3.4.2.1-7). El número de especies por parcela promedio fue de 4,9, variando desde dos hasta ocho especies, mientras que la cobertura promedio alcanzo 32,0%, con valores entre 9,0 y 103,2% y la diversidad medida por el índice de Shannon-Wiener fue relativamente baja en promedio (H'= 1,692 bits/ind., entre 0,495 y 2,206 bits/ind.) al igual que la medida por el índice de Simpson (1-D= 0,603 probits en promedio). Estos valores de diversidad fueron mayores a la vegetación similar de playas marinas, debido principalmente a la mayor riqueza (=número) de especies más que a la fuerte dominancia de una especie, lo que se puede observar en los mayores valores de equitabilidad (0,76 en promedio).

En síntesis se puede decir que esta unidad de vegetación se caracteriza por una riqueza y diversidad de especies medias, así como una cobertura media. En comparación con la otra unidad de vegetación herbácea la cobertura fue menor pero los valores de riqueza y diversidad fueron mayores en comparación con todas las demás unidades evaluadas.

Cuadro 3.4.2.1-7. Parámetros comunitarios correspondientes a la unidad de vegetación Halófita de Riberas de Ríos o Lagunas (VHRR).

Sitio	Localidad	Parcela	Especies	Cobertura	Shannon- Wiener (H')	Simpson (1-D)	Equitabilidad
		Ve-07	3,0	8,96	1,1032	0,5023	0,6961
		Ve-08	2,0	5,75	0,7554	0,3403	0,7554
	Catuaria	Ve-09	5,0	27,08	1,2729	0,4746	0,5482
SM02	Estuario Virrilá	Ve-10	4,0	23,70	0,5940	0,1831	0,2970
		Ve-11	2,0	21,53	0,4950	0,1932	0,4950
		Ve-12	3,0	103,17	1,1246	0,4668	0,7095
		Promedio	3,2	31,70	0,8908	0,3601	0,5835
	Orilla	Ve-35	5,0	20,15	1,8755	0,6833	0,8077
SM08	izquierda	Ve-36	8,0	33,49	2,0804	0,6738	0,6935
	Virrilá	Promedio	6,5	26,82	1,9779	0,6786	0,7506
	Línea	Ve-73	5,0	37,54	2,2059	0,7696	0,9500
SM16	transmisión proyectada 138KV	Promedio	5,0	37,54	2,2059	0,7696	0,9500
	Promedio		4.9	32.02	1,6916	0,6027	0,7614

c.3) Bosque Seco con Predominio de Algarrobo (BSPA)

Esta unidad de vegetación es la más ampliamente representada en el área de evaluación. Se encuentra ocupando las zonas planas con suelos arenosos o con restos fósiles de antiguos moluscos marinos, se presentan en zonas que no tiene formación frecuente de dunas. En el área de estudio esta vegetación se encuentra distribuida en gran parte de las zonas bajas y altas con suelos áridos y es el tipo de vegetación más representativo del ámbito de la evaluación.

Trece especies fueron registradas en este tipo de vegetación (figura 3.4.2.1-4, cuadro 3.4.2.1-8), siendo la segunda unidad con mayor riqueza de especies, lo que se explica por la gran extensión que ocupa.

Seis especies son hierbas y cinco árboles, con dos arbustos (figura 3.4.2.1-9). Las hierbas son típicamente xerofitas y presentan una no muy marcada estacionalidad, mientras que arbustos y árboles son perennes. Las hierbas son de bajo porte (menos de 50 cm) mientras que los árboles varían mucho de tamaño dependiendo de la localidad, en algunas zonas altas llegan a alcanzar un máximo de 12 m. Esta unidad de vegetación se distribuye de manera relativamente homogénea en gran parte del área de estudio (figura 3.4.2.1-10).

Cuadro 3.4.2.1-8. Lista de especies de plantas vasculares presentes en la unidad de Bosque Seco con Predominio de Algarrobo (BSPA).

Familia	Nombre científico	Nombre común
AMARANTHACEAE	Alternanthera peruviana (Moquin) Suess.	hierba blanca
ASTERACEAE	Encelia sp.	
BORAGINACEAE	Tiquilia dichotoma (R. & P.) Pers.	manito de ratón
BOTT TO IT TO ETTE	Tiquilia paronychioides (F. Phil.) A.T. Richardson	flor de arena
CAPPARACEAE	Capparis avicennifolia Kunth	vichayo, bichayo
Ora Tradicional	Colicodendron scabridum (Kunth) Seem.	sapote
	Acacia aroma Gillies ex Hook. & Arn.	espino
FABACEAE	Cercidium praecox (Ruiz & Pav.) Harms subsp. praecox	palo verde
17.02.10	Hoffmannseggia viscosa (R & P.) Hook &Arn. var. viscosa	
	Prosopis pallida (Humb. & Bonpl. ex Willd.) Kunth	algarrobo
PLANTAGINACEAE	Galvesia fruticosa Gmel.	curi
POACEAE	Aristida chiclayense Tovar	
RHAMNACEAE	Scutia spicata (Humb. & Bonpl. ex Willd.) Weberb.	espino verde

Figura 3.4.2.1-9. Número de especies de plantas por formas de crecimiento presentes en la vegetación de Bosque Seco con Predominio de Algarrobo (BSPA)

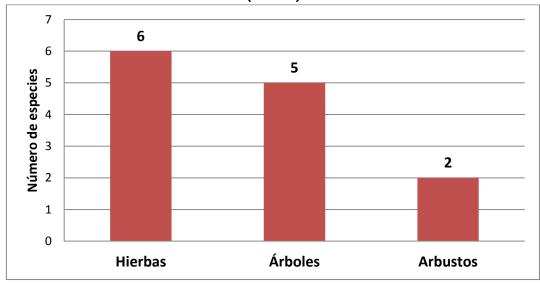


Figura 3.4.2.1-10. Bosque Seco con Predominio de Algarrobo (BSPA) cerca del estuario Virrilá.

Esta unidad fue evaluada en diez sitios de muestreo, dos en áreas de posibles pozas (SM05, SM09), una al sureste del tajo (SM11), una en la zona posible de la planta (SM07), dos en la zona de la potencial línea de transmisión eléctrica (SM14 y SM15), una al pie del Cerro Illescas (SM17), otra en la Pampa Las Hornillas (SM18), otra en la línea de transmisión de agua (SM19) y la última en el bosque frente al estuario de Virrilá (SM8b). En total se evaluaron 47 parcelas (cuadro 3.4.2.1-9). Los datos de estas parcelas han sido utilizados para el análisis cuantitativo de esta unidad de vegetación.

Cuadro 3.4.2.1-9. Parcelas y sitios de muestreo correspondiente a la unidad de Bosque Seco con Predominio de Algarrobos (BSPA)

-				
SITIO MUESTREO	LOCALIDAD	CODIGO	EASTING	NORTHING
		Ve-21	514636	9348907
		Ve-22	514565	9348861
SM05	Poza de evaporación	Ve-23	514838	9348955
		Ve-24	514832	9349021
		Ve-25	514638	9348603
		Ve-31	514932	9342586
SM07	Planta Mina	Ve-32	514857	9342642
SWO7	Fidilla Willia	Ve-33	514853	9342705
		Ve-34	514834	9342541
		Ve-39	521158	9342668
	Poza de lodos residuales	Ve-40	521143	9342945
		Ve-41	521250	9342558
SM09		Ve-42	521160	9342382
		Ve-43	521110	9342392
		Ve-44	521089	9342978
		Ve-45	521142	9342593
	3.5 km al sureste del tajo	Ve-53	522486	9337569
SM11	abierto	Ve-54	522441	9337562
	abicito	Ve-55	522323	9337573
	Línea de transmisión	Ve-67	545315	9343903
SM14	eléctrica proyectada	Ve-68	545251	9344099
	138Kv	Ve-63	545443	9344048

SITIO MUESTREO	LOCALIDAD	CODIGO	EASTING	NORTHING
		Ve-64	545414	9343819
		Ve-65	545430	9343908
		Ve-66	545313	9343972
	Línea de transmisión	Ve-69	547596	9343869
SM15	eléctrica proyectada	Ve-70	547675	9343975
SIVITS	138Kv	Ve-71	547579	9343804
	100117	Ve-72	547479	9343735
		Ve-74	502774	9343643
		Ve-75	502818	9343714
SM17	Al pie Cerro Illescas	Ve-76	502830	9343827
SIVITY		Ve-77	502782	9343605
		Ve-78	502823	9343711
		Ve-79	502876	9343756
		Ve-80	503991	9347235
	Pampa Las Hornillas	Ve-81	503724	9347095
SM18		Ve-82	503650	9347153
SWITO		Ve-83	504371	9347785
		Ve-84	504500	9347759
		Ve-85	504508	9347819
		Ve-86	505011	9352703
SM19	Al Norte de Illescas	Ve-87	504975	9352750
314113	Al Norte de Illescas	Ve-88	504971	9352643
		Ve-89	505098	9352680
SM08b	Bosque frente Virrilá	Ve-37	517178	9351284
Simoob	Dosque irente virnia	Ve-38	517042	9351219

De manera similar a la anterior unidad, este análisis cuantitativo permitió obtener información de abundancia, cobertura total, diversidad de especies y equitabilidad en esta unidad de vegetación (cuadro 3.4.2.1-10). El número de especies por parcela promedio fue de 1.7, variando desde uno hasta tres especies, mientras que la cobertura promedio alcanzó 38.4%, con valores entre 4.0 y 84.0% y la abundancia (medida como la densidad por parcela) presentó un promedio de 5.0 árboles por parcela con valores entre 1 y 18 árboles. La diversidad medida por el

índice de Shannon-Wiener fue muy baja en promedio (H'= 0.603 bits/ind., entre 0 y 1.50 bits/ind.) al igual que la medida por el índice de Simpson (1-D= 0.284 probits en promedio). Estos valores de diversidad fueron menores a los de la vegetación herbácea (VHPM y VHRR), debido principalmente a que cada parcela suele incluir muy pocos individuos y en consecuencia pocas especies, en aquellos casos donde una sola especie se presenta el índice es cero, lo que disminuye el valor promedio final. Sin embargo, los valores de riqueza, diversidad y cobertura fueron mayores a lo registrado en el bosque seco con predominancia de sapote.

Cuadro 3.4.2.1-10. Parámetros comunitarios correspondientes a la unidad de vegetación Bosque Seco con predominancia de Algarrobo (BSPA)

Sitio de Muestreo	Localidad	Parcela	Especie s	Individuos	Shannon -Wiener (H')	Simpson (1-D)	Equitabilidad	Cobertura
		Ve-21	1,0	1,0	0,0000	0,0000	0,0000	32,6
		Ve-22	1,0	3,0	0,0000	0,0000	0,0000	55,0
SM05	Poza de	Ve-23	2,0	4,0	0,8112	0,3750	0,8112	40,0
Cinico	Evaporación	Ve-24	1,0	5,0	0,0000	0,0000	0,0000	15,2
		Ve-25	2,0	3,0	0,9183	0,4444	0,9183	40,6
		Promedio	1,4	3,2	0,3459	0,1639	0,3459	36,7
		Ve-31	2,0	7,0	0,5916	0,2449	0,5916	68,2
		Ve-32	1,0	3,0	0,0000	0,0000	0,0000	41,8
SM07	Planta Mina	Ve-33	2,0	2,0	0,9999	0,5000	0,9999	13,6
		Ve-34	2,0	2,0	0,9999	0,5000	0,9999	29,4
		Promedio	1,8	3,5	0,6479	0,3112	0,6479	38,3
		Ve-39	2,0	4,0	0,8112	0,3750	0,8112	45,0
		Ve-40	2,0	2,0	0,9999	0,5000	0,9999	32,0
	Poza de	Ve-41	2,0	3,0	0,9183	0,4444	0,9183	84,0
SM09	lodos	Ve-42	2,0	4,0	0,8112	0,3750	0,8112	32,4
ONIOS	residuales	Ve-43	2,0	2,0	0,9999	0,5000	0,9999	27,2
	rooladaloo	Ve-44	2,0	4,0	0,8112	0,3750	0,8112	11,0
		Ve-45	2,0	2,0	0,9999	0,5000	0,9999	22,8
		Promedio	2,0	3,0	0,9074	0,4385	0,9074	36,3
	3.5 km al	Ve-53	2,0	2,0	0,9999	0,5000	0,9999	14,0
SM11	sureste del	Ve-54	1,0	1,0	0,0000	0,0000	0,0000	4,0
O.M. I	tajo abierto	Ve-55	1,0	2,0	0,0000	0,0000	0,0000	13,4
	tajo abiei to	Promedio	1,3	1,7	0,3333	0,1667	0,3333	10,5

Sitio de Muestreo	Localidad	Parcela	Especie s	Individuos	Shannon -Wiener (H')	Simpson (1-D)	Equitabilidad	Cobertura
		Ve-63	1,0	4,0	0,0000	0,0000	0,0000	32,0
	Línea de	Ve-64	2,0	4,0	0,8112	0,3750	0,8112	44,0
	transmisión	Ve-65	1,0	3,0	0,0000	0,0000	0,000	30,0
SM14	eléctrica	Ve-66	1,0	3,0	0,0000	0,0000	0,0000	30,0
	Proyectada	Ve-67	2,0	4,0	0,9999	0,5000	0,9999	44,8
	138Kv	Ve-68	1,0	5,0	0,0000	0,0000	0,0000	48,2
		Promedio	1,3	3,8	0,3019	0,1458	0,3019	38,2
	Línea	Ve-69	1,0	8,0	0,0000	0,0000	0,000	36,4
	transmisión	Ve-70	2,0	3,0	0,9183	0,4444	0,9183	34,0
SM15	eléctrica	Ve-71	1,0	2,0	0,0000	0,0000	0,000	34,0
	proyectada	Ve-72	2,0	3,0	0,9183	0,4444	0,9183	49,0
	138 KV	Promedio	1,5	4,0	0,4591	0,2222	0,4591	38,4
	al pie Cerro Illescas	Ve-74	2,0	7,0	0,9852	0,4898	0,9852	68,0
		Ve-75	2,0	6,0	0,9183	0,4444	0,9183	62,0
		Ve-76	2,0	6,0	0,6501	0,2778	0,6501	79,0
SM17		Ve-77	2,0	4,0	0,8112	0,3750	0,8112	47,4
		Ve-78	2,0	5,0	0,9709	0,4800	0,9709	46,4
		Ve-79	2,0	6,0	0,9183	0,4444	0,9183	46,0
		Promedio	2,0	5,7	0,8757	0,4186	0,8757	58,1
	Pampa Las Hornillas	Ve-80	2,0	13,0	0,7793	0,3550	0,7793	39,2
		Ve-81	2,0	7,0	0,5916	0,2449	0,5916	47,0
		Ve-82	2,0	14,0	0,9403	0,4592	0,9403	69,2
SM18		Ve-83	2,0	2,0	0,9999	0,5000	0,9999	28,0
	Horrinas	Ve-84	1,0	18,0	0,0000	0,0000	0,0000	46,0
		Ve-85	3,0	8,0	1,2989	0,5313	0,8195	21,4
		Promedio	2,0	10,3	0,7684	0,3484	0,6885	41,8
		Ve-86	2,0	4,0	0,8112	0,3750	0,8112	20,4
	Al Norte de	Ve-87	2,0	9,0	0,5032	0,1975	0,5032	47,8
SM19	Illescas	Ve-88	3,0	4,0	1,5004	0,6250	1,0400	19,6
	illestas	Ve-89	2,0	12,0	0,8112	0,3750	0,5623	21,2
		Promedio	2,3	7,3	0,9065	0,3931	0,7292	27,3
	Rosauo	Ve-37	1,0	3,0	0,0000	0,0000	0,0000	31,5
SM08b	Bosque frente Virrilá	Ve-38	1,0	11,0	0,0000	0,0000	0,0000	70,0
	neme viilia	Promedio	1,0	7,0	0,0000	0,0000	0,0000	50,8
	Promedio		1,6	4,9	0,4639	0,2170	0,4381	36,5

c.4) Bosque Seco con Predominio de Sapote (BSPS)

Esta unidad de vegetación es el segundo tipo de bosque presente en el área de evaluación. Se encuentra ocupando las zonas planas y colinosas con suelos arenosos en zonas donde el viento produce dunas de arena de diferentes tamaños.

Seis especies fueron registradas en este tipo de vegetación (figura 3.4.2.1-4, cuadro 3.4.2.1-11), siendo la segunda unidad con menor riqueza de especies, lo que se explica porque la presencia de vientos fuertes que acarrean la arena y forman dunas hace difícil el establecimiento de las plantas.

Tres especies son hierbas y tres árboles (figura 3.4.2.1-11). Las hierbas son típicamente xerofitas sin una marcada estacionalidad, mientras que los árboles son perennes.

Las hierbas son de bajo porte (menos de 40 cm) mientras que los árboles varían mucho de tamaño dependiendo de la localidad, en algunas zonas llegan a alcanzar un máximo de 4 m, pero la mayoría tiene menos de 2 m. Esta unidad de vegetación se distribuye de manera fragmentada en el área de estudio (figura 3.4.2.1-12).

Cuadro 3.4.2.1-11. Lista de especies de plantas vasculares presentes en la unidad de Bosque Seco con Predominio de Sapotes (BSPS)

Familia	Nombre científico	Nombre común
BORAGINACEAE	Tiquilia dichotoma (R. & P.) Pers.	manito de ratón
5017,10117,1027,12	Tiquilia paronychioides (F. Phil.) A.T. Richardson	flor de arena
CAPPARACEAE	Capparis avicennifolia Kunth	vichayo, bichayo
0,41,7410,402,42	Colicodendron scabridum (Kunth) Seem.	sapote
FABACEAE	Hoffmannseggia viscosa (R & P.) Hook. & Arn. var. viscosa	
	Prosopis pallida (Humb. & Bonpl. ex Willd.) Kunth	algarrobo

Figura 3.4.2.1-11. Número de especies de plantas por formas de crecimiento presentes en la vegetación de Bosque Seco con Predominio de Sapotes (BSPS)

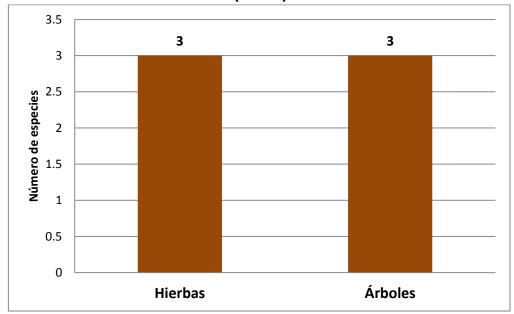


Figura 3.4.2.1-12. Bosque Seco con Predominio de Sapotes (BSPS) cerca de la línea de transmisión eléctrica existente

Esta unidad fue evaluada en cuatro sitios de muestreo, una a 8 km al este del tajo abierto (SM10), una en la zona camino de la futura planta (SM06), una en la Pampa Yapato (SM12) y la última en la zona cerca a Punta Zapayal (SM13a). En total se evaluaron 19 parcelas (cuadro 3.4.2.1-12). Los datos de estas parcelas han sido utilizados para el análisis cuantitativo de esta unidad de vegetación.

Cuadro 3.4.2.1-12. Parcelas y sitios de muestreo correspondiente a la unidad de Bosque Seco con Predominio de Sapotes (BSPS)

unidad de bosque seco con Fredominio de Sapotes (BSFS)							
Sitio de Muestreo	Localidad	Código	Este	Norte			
		Ve-26	515 858	9 343 844			
	Camino a	Ve-27	515 843	9 343 774			
SM06	Planta	Ve-28	515 784	9 343 574			
	rianta	Ve-29	515 822	9 343 534			
		Ve-30 515 876		9 343 461			
		Ve-46	527 734	9 339 371			
	8 km al este del	Ve-47	527 771	9 339 431			
		Ve-48	527 701	9 339 314			
SM10	tajo abierto	Ve-49 527 624	527 624	9 339 319			
	tajo abiei to	Ve-50	527 560	9 339 341			
		Ve-51	527 594	9 339 388			
		Ve-52	527 610	9 339 401			
SM12	Pampa Yapato	Ve-56	523 599	9 346 037			
OW 12	railipa Tapato	Ve-57	523 650	9 346 045			
		Ve-58	538 820	9 341 164			
	cerca Punta	Ve-59	538 963	9 341 232			
SM13a	Zapayal	Ve-60	534 907	9 341 321			
	Lapayai	Ve-61	534 918	9 341 373			
		Ve-62	535 120	9 341 445			

Fuente: BISA, 2012

De manera similar a la anterior unidad, este análisis cuantitativo permitió obtener información de abundancia, cobertura total, diversidad de especies y equitabilidad en este tipo de bosque (cuadro 3.4.2.1-13). El número de especies por parcela promedio fue de 1.6, variando desde uno hasta tres especies, mientras que la

cobertura promedio alcanzó 28.7%, con valores entre 0.3 y 54.3% y la abundancia (medida como la densidad por parcela) presentó un promedio de 4.7 árboles por parcela con valores entre 1 y 17 árboles. La diversidad medida por el índice de Shannon-Wiener fue muy baja en promedio (H'= 0.502 bits/ind., entre 0 y 1.26 bits/ind.) al igual que la medida por el índice de Simpson (1-D= 0.235 probits en promedio). Estos valores de diversidad fueron menores a los del bosque seco con predominancia de Algarrobos (BSPA), debido principalmente a que cada parcela suele incluir muy pocas especies, en aquellos casos donde una sola especie se presenta el índice es cero, lo que disminuye el valor promedio final. En comparación a las demás unidades, los valores de riqueza, diversidad y cobertura fueron las menores registradas.

Cuadro 3.4.2.1-13. Parámetros comunitarios correspondientes a la unidad de vegetación Bosque Seco con predominancia de Sapotes (BSPS)

Sitio de muestreo	Localidad	Parcelas	Especies	Árboles	Shannon-Wiener (H')	Simpson 1-D	Equitabilidad	%Cobertura
		Ve-26	1,0	4,0	0,0000	0,0000	0,0000	26,00
I		Ve-27	1,0	1,0	0,0000	0,0000	0,0000	8,00
SM06	Camino a Planta	Ve-28	2,0	9,0	0,7642	0,3457	0,7642	40,80
Sivioo	Callillo a Flanta	Ve-29	2,0	2,0	0,9999	0,5000	0,9999	9,00
I		Ve-30	1,0	1,0	0,000	0,0000	0,0000	3,00
		Promedio	1,4	3,4	0,3528	0,1691	0,3528	17,36
.		Ve-46	2,0	3,0	0,9183	0,4444	0,9183	32,00
		Ve-47	2,0	3,0	0,9183	0,4444	0,9183	10,20
	8 km al este del tajo abierto	Ve-48	1,0	1,0	0,0000	0,0000	0,0000	18,00
SM10		Ve-49	1,0	4,0	0,0000	0,0000	0,0000	23,80
Jivi 10		Ve-50	1,0	2,0	0,0000	0,0000	0,0000	0,30
I		Ve-51	2,0	5,0	0,9709	0,4800	0,9709	19,60
		Ve-52	1,0	3,0	0,0000	0,0000	0,0000	0,60
		Promedio	1,4	3,0	0,4011	0,1955	0,4011	14,93
	Pampa Yapato	Ve-56	3,0	17,0	1,2639	0,5536	0,7975	54,30
SM12		Ve-57	2,0	3,0	0,9183	0,4444	0,9183	48,00
		Promedio	2,5	10,0	1,0911	0,4990	0,8579	51,15
		Ve-58	2,0	4,0	0,8112	0,3750	0,8112	45,00
		Ve-59	1,0	3,0	0,0000	0,0000	0,0000	29,00
SM13a	coros Bunto Zonoval	Ve-60	1,0	2,0	0,000	0,0000	0,0000	44,00
SIVI 13a	cerca Punta Zapayal	Ve-61	1,0	1,0	0,000	0,0000	0,0000	8,00
I		Ve-62	1,0	1,0	0,000	0,0000	0,0000	30,00
I		Promedio	1,2	2,2	0,1622	0,0750	0,1622	31,20
Promedio	1.6	4.7	0,5018	0,2347	0,4435	28,66		

c.5) Áreas basales y volúmenes de madera

Para los bosques secos presentes en el ámbito de estudio se determinó las áreas basales de los árboles, así como el volumen de madera aproximado. Los valores de área basal variaron mucho en las diferentes parcelas con un promedio para el bosque seco con predominio de algarrobos (BSPA) de 24.4 m²/ha y con la mayoría de parcelas con valores de menos de 20 m²/ha (figura 3.4.2.1-13).

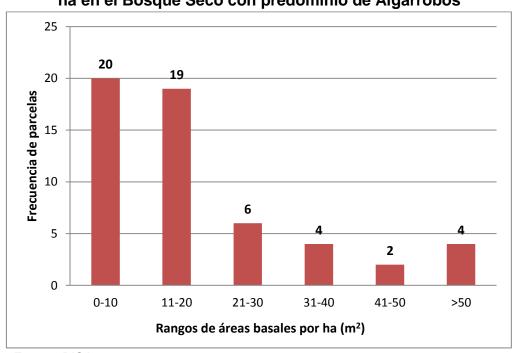
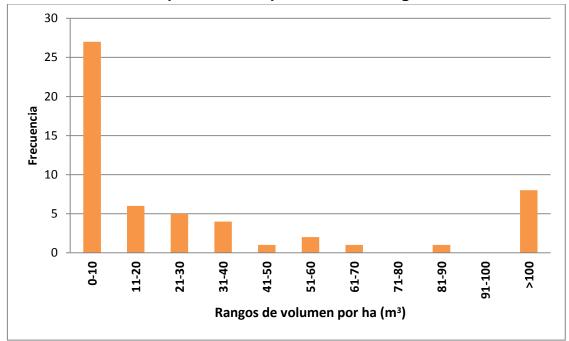


Figura 3.4.2.1-13. Frecuencia de parcelas por rangos de áreas basales por ha en el Bosque Seco con predominio de Algarrobos

Fuente: BISA, 2012

Los valores de área basal variaron también mucho en las diferentes parcelas con un promedio para el bosque seco con predominio de sapotes (BSPS) de 22.3 m²/ha y con la mayoría de parcelas con valores de menos de 2.5 m²/ha (figura 3.4.2.1-14).

9 8 8 7 6 Frecuencia de parcelas 3 3 2 1 1 1 0 0 0-2.50 2.51-5.00 5.10-7.50 7.51-10.00 10.10-12.50 >12.50 Rangos de áreas basales por ha (m²)


Figura 3.4.2.1-14. Frecuencia de parcelas por rangos de áreas basales por ha en el Bosque Seco con predominio de Sapote

Analizando los valores de volumen de madera calculado para ambos tipos de bosque seco presentes en el área y considerando tanto el fuste como las ramas de los árboles, se encuentra que en el caso de los bosques con predominio de algarrobos (BSPA) el valor promedio fue de 53.1 m³/ha, lo que indica un pobre valor de potencial forestal (cuadro 3.4.2.1-14), sin embargo, este valor cercano al límite de regular (cuadro 3.4.2.1-14) se debe a unas pocas parcelas con valores altos ubicadas en el sitio de muestreo SM18 (Pampa Las Hornillas) y en el sitio SM17 (al pie del cerro Illescas), la gran mayoría de parcelas se encuentran por debajo de los 10 m³/ha (un valor de pobre potencial forestal) (figura 3.4.2.1-15).

Cuadro 3.4.2.1-14. Categorías de Potencial Forestal según IIAP 2008 en Martínez (2010)

	• • •	
Categoría	Potencial	Volumen (m³/ha)
I	Excelente	>150
II	Muy bueno	120-150
II	Bueno	90-120
IV	Regular	60-90
V	Pobre	<60

Figura 3.4.2.1-15. Frecuencia de parcelas por rangos de volumen por ha. en el Bosque Seco con predominio de Algarrobo

Fuente: BISA, 2012

En los bosques con predominio de sapote (BSPS) el valor promedio de volumen de madera fue de 39.7 m³/ha, lo que indica un valor pobre de potencial forestal (cuadro 3.4.2.1-14), este valor es más alto que el de la mayoría de parcelas debido a dos parcelas con valores altos ubicadas en el sitio de muestreo SM06 (camino a planta) y en el sitio SM13a (punta Zapayal), la gran mayoría de parcelas se encuentran por debajo de los 20 m³/ha (un valor de pobre potencial forestal) (figura 3.4.2.1-16, cuadro 3.4.2.1-14).

14
12
10
10
4
2
0
0-20
21-40
41-60
61-80
>80

Rangos de volumen por ha (m³)

Figura 3.4.2.1-16. Frecuencia de parcelas por rangos de volumen por ha en el Bosque Seco con predominio de Sapote

c.6) Sitios de muestreo

Los sitios de muestreo presentaron diferentes características en su flora y vegetación, definitivamente las diferencias más notables se dan en aquellos sitios con diferentes unidades (cuadro 3.4.2.1-15, figura 3.4.2.1-17).

El Sitio de muestreo con mayor cobertura total fue SM01 correspondiente a una unidad de vegetación halófita en playa marina (Playa en la desembocadura de Virrilá), mientras que los sitios con mayor riqueza (= número) de especies son los sitios SM08 y SM16, los dos correspondiente a vegetación halófita en ribera de río o laguna; estos mismos sitios corresponden a los de mayor diversidad biológica. Los valores de mayor número de individuos (parámetro restringido a los bosques) fueron SM18 (bosque seco con predominio de algarrobos) y SM12 (bosque seco con predominio de sapotes) (cuadro 3.4.2.1-15, figura 3.4.2.1-17).

12.00 80.00 Cobertura **−●−** Especies -Individuos Shannon-Wiener (H') 70.00 10.00 Número especies e individuos **Diversidad Shanon-Wiener** 60.00 8.00 50.00 **e** 40.00 **g** 30.00 % 6.00 4.00 20.00 2.00 10.00 0.00 0.00

Figura 3.4.2.1-17. Parámetros comunitarios principales de los sitios de muestreo en el área de estudio

Cuadro 3.4.2.1-15. Parámetros comunitarios principales de los sitios de muestreo en el área de estudio

Sitio muestreo	Especies	Individuos	Shannon-Wiener (H')	Cobertura	Unidad
SM01	2.33		0.77	75.56	VHPM
SM02	3.17		0.89	31.70	VHRR
SM05	1.40	3.20	0.35	36.68	BSPA
SM06	1.40	3.40	0.35	17.36	BSPS
SM07	1.75	3.50	0.65	38.25	BSPA
SM08	6.50		1.98	26.82	VHRR
SM08b	1.00	7.00	0.00	50.75	BSPA
SM09	2.00	3.00	0.91	36.34	BSPA
SM10	1.43	3.00	0.40	14.93	BSPS
SM11	1.33	1.67	0.33	10.47	BSPA
SM12	2.50	10.00	1.09	51.15	BSPS
SM13a	1.20	2.20	0.16	31.20	BSPS
SM14	1.33	3.83	0.30	38.17	BSPA
SM15	1.50	4.00	0.46	38.35	BSPA

Sitio muestreo	Especies	Individuos	Shannon-Wiener (H')	Cobertura	Unidad
SM16	5.00		2.21	37.54	VHRR
SM17	2.00	5.67	0.88	58.13	BSPA
SM18	2.00	10.33	0.77	41.80	BSPA
SM19	2.25	7.25	0.91	27.25	BSPA

3.4.2.1.5 Conclusiones

- La flora del área de estudio está compuesta por un número limitado de especies, tan sólo 28, con predominio de las familias Fabaceae, Poaceae, Cyperaceae y Boraginaceae.
- La vegetación del ámbito de evaluación corresponde a cuatro unidades de vegetación: vegetación halófita de playas marinas, vegetación halófita de ribera de ríos y lagunas, bosque seco con predominio de algarrobos y bosque seco con predominio de sapotes.
- Los bosques secos con predominio de algarrobos y la vegetación halófita de ribera de ríos y lagunas son las que presentan más especies de importancia, por lo que deben ser consideradas prioritarias.
- Los valores de volúmenes de madera son muy bajos y están considerados dentro de los parámetros considerados como de pobre potencial forestal.
- Las áreas cercanas al estuario Virrilá deben ser consideradas como frágiles, debido a que las lluvias en los eventos El Niño podrían ocasionar deslaves que afecten la vegetación ribereña y el mismo estuario de gran importancia biológica.

 El sapote Colicodendron scabridum debe ser considerada para un plan de manejo y recuperación por la creciente demanda de su madera con fines artesanales.

3.4.2.1.6 Bibliografía

- Arana, C. 2007. Manual de evaluación de la vegetación. Universidad
 Nacional Mayor de San Marcos, Lima.
- Bernex De Falen, N. & B. Revesz. 1988; Atlas Regional de Piura. Centro de Investigación y Promoción del Campesinado. PUCP - Centro de Investigación en Geografía Aplicada. Lima.
- Brack, A. 1986. Las ecorregiones del Perú. Bol. Lima 44: 57-70.
- Caviedes, C.N. 1998. Influencia de ENSO sobre las variaciones interanuales de ciertos ríos en América del Sur. Bull. de l'Intsitut Français d'Etudes Andines 27, 627-642.
- Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES). 2012. Apéndices I, II y III (en vigor a partir del 3 de abril de 2012).
- Decreto supremo Nº 043-2006-AG. Categorización de especies amenazadas de flora silvestre.
- Erdmann, W.; N. Schulz, M: Richter & E.F. Rodríguez Rodríguez. 2008.
 Efectos del fenómeno del Niño 1997-1998 en la vegetación del desierto de Sechura, Región Paita hasta el año 2008. Arnaldoa 15(1): 63 – 86.
- Ferreyra, R. 1979. El Algarrobal y Manglar de la Costa Norte. Boletín de Lima. 1: 12-18.

- Ferreyra, R. (1983). Los tipos de vegetación de la costa peruana. Anales Jard. Bot. Madrid 40(1)241-256.
- Flowers, T.J., H. K. Galal & L. Bromham. 20120. Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology, 37:604–612.
- Gálvez, M. R. Barrionuevo & M. Charcape. 2006. El Desierto de Sechura: Flora, Fauna y relaciones Ecológicas. Universalia 11 (2):33-43.
- Goldberg, R.A.; G. Tisnado & R.A. Scofield. 1987. Characteristics of extreme rainfall events in NWPeru during the 1982/83 El Niño period. -Journal of Geophysical Research 92, 14225-14241.
- IUCN 2012. The IUCN Red List of Threatened Species. Version 2012.1.
 http://www.iucnredlist.org. Downloaded on 19 May 2012.
- León, B., J. Roque, C. Ulloa Ulloa, P.M. Jørgensen, N. Pitman & A. Cano (eds.) 2006. Libro Rojo de las Plantas endémicas del Perú. Revista Peruana de Biología, Edición Especial 13(2): 971 pp.
- Martínez, P. 2010. Forestal. Proyecto Mesozonificación Ecológica y Económica para el Desarrollo Sostenible del Valle del Río Apurímac - VRA. Iquitos – Perú
- Mateucci, S. D. & A. Colma. 1982. Metodología para el estudio de la vegetación. OEA, Monografía Científica # 22. 168+vi pp. Washington.
- Mostacero, J., F. Mejía y F. Pelaez. 1996. Fitogeografía del norte del Perú.
 Edit. CONCYTEC. Lima Perú.
- Raimondi, A. 1901. El Perú. Vol. I-IV. Lima, Perú.

- Rodríguez Rodríguez E. F., R. W. Bussmann, S. J. Arroyo, S. E. López & J. Briceño. 2007. *Capparis scabrida* (Capparaceae) una especie del Perú y Ecuador que necesita planes de conservación urgente. Arnaldoa 14(2):269-282.
- Tovar, O. 1993. Las Gramíneas del Perú. Ruizia: RUIZIA, tomo 13.
 Monografía del Real Jardín Botánico: 1-482. Real Jardín Botánico. Madrid,
 España.480 pp.
- Womersley, J.S. 1981. Plant collecting and herbarium development: A manual. Food and Agriculture Organization of the United Nations (Rome).
- Weberbauer, A. 1945. El Mundo Vegetal de los Andes Peruanos. Estudio Fitogeográfico. Edit. Lumen. Ministerio de Agricultura. Lima. Perú.

3.4.2.2 Fauna - Aves

3.4.2.2.1 Introducción

Las aves son actualmente los vertebrados terrestres más diversos y más conocidos extensamente por el hombre, registrándose а la fecha aproximadamente 10 000 especies en el mundo y 1 839 especies reportadas para el Perú (Plenge 2012). Las aves son el taxa algo más estudiado en varias vías y son en gran medida una herramienta frecuentemente empleada en la caracterización del ambiente que las rodea. Las aves han sido identificadas como especies focales en la conservación, de modo que en torno a ellas se han creado varias estrategias de conservación. Así se han empleado aves carismáticas como especie bandera, atrayendo una atención y un apoyo público que -entoncespueden ser empleados para proteger sus ecosistemas (Caro y Doherty, 1999). Otras aves han sido identificadas como especies indicadoras, u "organismo(s) cuyas características se emplean como un índice de los atributos demasiado difíciles, inconvenientes, o caros de medir en otras especies o condiciones ambientales de interés" (Landres et al., 1988). Las especies de aves paraguas favorecen la protección de comunidades o de hábitats, cuando los requisitos de hábitat y de rango del ave también abarcan las necesidades de otros objetivos de conservación (Caro y Doherty, 1999).

En el mundo existe una creciente preocupación en torno a la conservación de la vida, una búsqueda de las amenazas a la biodiversidad; de reconocimiento de los beneficios de un ambiente saludable y biodiverso, enfrentado que el uso de los recursos por el hombre debe realizarse de modo sustentable. El Perú es un país megadiverso, siendo el segundo en el mundo en diversidad de aves. Esta gran diversidad está en estrecha relación con la riqueza de ambientes que en el Perú existe, hallándose en el extremo noroeste la región Tumbesina con una singular e importante avifauna adaptada tanto al ambiente marino y a los bosques seco de

esta región del Perú (Best et al 1993, Dinerstein et al 1995, Flanagan et al 2005, MANU EXPEDITION 2007, Stattersfield et al 1998).

La avifauna de Piura llamó tempranamente la atención de los primeros zoólogos y ornitólogos que han realizado estudios en el Perú. De las investigaciones ornitológicas realizadas más tempranamente en esta región del país tenemos las realizadas cerca de ambientes marinos, como las de Garnot en Paita en 1823 (Lesson &Garnot, 1826), las de Markham en 1882 (Salvin, 1883) y las de MacFarlane en 1883 (MacFarlane, 1887). Los estudios de Murphy sobre la avifauna marina en Lobitos (Murphy, 1936), así como los de Coker (Coker, 1920), Verrill (Verrill, 1923) y los esposos Koepcke (H. Koepcke, 1961), marcaron un hito importante en el conocimiento de la diversidad y biología de las principales aves marinas costeras del norte del Perú.

La avifauna de diversos tipos de hábitat continentales fue objeto de estudio del investigador Italiano Antonio Raimondi, quien en el siglo XIX investigó la fauna de Sechura, La Huaca (Taczanowski, 1884) y Morropón (Vaurie, 1972). Simons estudió la avifauna da la ciudad de Piura, Chulucanas, Morropón y Amotape en 1899 (Chubb, 1919). En el siglo XX son importantes los estudios que Verrill realizo en Paita (Verrill, 1923), Vellard en Paimas en 1955 (Berilos, 1962) y en la década de 1970 se realizaron nuevos estudios en Sechura por Campbell (Campbell, 1971) y por O'Neill y Kennedy en Morropón (Schulenberg & Parker, 1981).

Los esposos Koepcke estudiaron varias localidades piuranas entre 1950 a 1956, como la Hacienda Pabur en el río Piura, Suyo cerca al río Chira (M. Koepcke, 1961; H Koepcke, 1961), Sullana (Koepcke & Koepcke, 1982), Máncora, Los Órganos (H Kopcke, 1961), Zorritos, Los Ceibos cerca del Angolo en el cerro Amotape y Canchaque. Estudios más recientes han sido realizados en la sierra de este departamento (Best et al., 1993; Flanagan & Vellinga, 2000).

El Bosque seco del norte peruano fue estudiado por los esposos Koepcke (H-W Kopecke 1961, Stephens & Traylor 1983). La avifauna de la costa e islas del departamento fueron estudiada por Murphy (Murphy 1922). En la costa norte la localidad de Cabo Verde ubicada entre Lambayeque y Piura fue estudiada por H-W Koepcke (1961), las islas guaneras del norte peruano fueron estudiadas por Coker (Coker 1920), por Murphy en 1919 (Murphy 1920), por Fagan en setiembre de 1922 (Schulenberg & Parker 1981, Wetmore 1923), por la Expedición Hancock en enero de 1935 (Garth 1937) y Tovar (1969). Años más tarde, en 1933, Carriker colectó especímenes en Tumbes, Piura y Lambayeque para la Academia de Ciencias Naturales de Filadelfia (Schulenberg y Parker, 1981) y posteriormente Koepcke realizó colectas en la década de los 50 (Catálogo Museo de Historia Natural "Javier Prado").

En la década del 2000 se consolidan esfuerzos de conservación de aves de la región tumbesina (in situ y ex situ), tanto del sistema nacional, como iniciativas más modernas de conservación, incluyendo el esfuerzo privado (R.M. Nº1324-2001-AG, Angulo 2011, Flanagan & Vellinga 2000, Rodríguez, L.O. (ED.). 1996).

El presente informe es el resultado de la evaluación ornitológica de campo realizada durante los meses de abril y julio del presente año.

3.4.2.2.2 Objetivos

- Evaluar cualitativa y cuantitativamente la población de aves que se encuentren presentes en los diferentes tipos de hábitats que albergan el proyecto.
- Determinar las áreas de mayor importancia para las aves en el área del proyecto.
- Comparar la lista de especies de aves silvestres con las listas de categorización nacional e internacionales.

3.4.2.2.3 Área de estudio

El área de estudio comprendió bosques secos con dominancia de algarrobos y otros con dominancia de sapotes, el desierto y vegetación halófila asociada al estuario de Virrilá y al extremo sureste de la Niña. Playas arenosas y rocosas en el litoral de Sechura en Virrilá, puerto Puerto Rico y Muelle de PETRO PERÚ. La vegetación al pie del Cerro Illescas también fue evaluada. El plano 830MA0001A-010-20-025 muestra las estaciones de muestreo consideradas en la evaluación.

3.4.2.2.4 Metodología

A. Etapa de gabinete: pre campo

Previo al trabajo de campo, se identificaron las especies de aves que potencialmente se encontrarían en la zona de estudio y a partir de ello, se identificó un grupo de mayor sensibilidad. La finalidad de la identificación de especies potenciales y especies sensibles del área de estudio fue generar información que contribuyera a la planificación del levantamiento de información en campo, al ajuste de metodologías y poder enfatizar la evaluación en campo sobre las especies sensibles.

B. Evaluación de campo

b.1) Descripción del trabajo de campo:

En cada uno de los 23 Sitios de Muestreo establecidas en el área de estudio se evaluaron un número de puntos proporcional a su extensión, desde 02 en Puerto Rico hasta 09 en la estensa zona entre SE La Niña y Punta Zapayal, evaluados en dos periodos humedo y seco. Las unidades de vegetación en el área de estudio fueron cuatro y la mayoria de las unidades de vegetación fueron evaluados en dos o mas Estaciones de Muestreo, algunas unidades de vegetación fueron evaluadas hasta en doce Sitios de muestreo. Finalmente

considerando los periodos de evaluación de campo, la avifauna del Bosque seco con predominio de algarrobos fue evaluada en 49 puntos en el periodo húmedo y 55 en el seco, la del Bosque seco con predominio de sapotes en 17 puntos en el periodo húmedo y en 13 puntos en el seco, la vegetación halófita de playa marina en 21 puntos en el periodo húmedo y 25 en el seco y la vegetación halófita de ribera de río en 12 puntos en ambos periodos. Dos sitios de muestreo no presentaron vegetación, el puerto evaluado en el Puerto Puerto Rico y el acantilado rocoso del Puerto PetroPeru.

La evaluación de la avifauna se realizó en dos periodos húmedo y seco. La primera evaluación se realizó entre el 27 de abril al 04 de mayo (periodo humedo), mientras que la segunda se realizó entre el 06 al 10 de julio del presente año (periodo seco). Las unidades de vegetación para ambos periodos fueron mayormente las mismas, sin embargo por algunas condiciones del terreno el acantilado rocoso del Puerto PetroPeru pudo ser evaluado únicamente durante el periodo seco de julio de 2012 en seis puntos de censo y en sólo dos puntos en un área cercana al puerto de Misky Mayo durante el periodo humedo de abril de 2012. Durante el periodo húmedo no pudo evaluarse el Sitio de Muestreo SM07 Planta Mina, ni el SM16 de Vegetación halófita de ribera de río en la Línea de Transmisión electrica. Este último sitio de muestreo sólo estuvo accesible a ser evaluado durante el periodo seco. Por tanto, en época húmeda se evaluó un total de 109 puntos de conteo (cuadro 3.4.2.2-1), mientras que en la época seca 119 (cuadro 3.4.2.2-2).

En los Sitios de Muestreo para la evaluación de la avifauna los puntos fueron establecidos al azar en la unidad de vegetación representativa de cada Sitio de Muestreo. Se utilizó la técnica de conteo de puntos para hacer las mediciones y comparaciones de diversidad, abundancia y riqueza de especies, pero el registro de la avifauna se realizo de modo continuo en cada estación de Muestreo, realizando observaciones en los recoriidos desde la mañana alrededor de las 6 h hasta la tarde a las 18:30 h. En cada Sitio de Muestreo los puntos fueron

georeferenciados con un GPS, en su mayoria, al igual que los lugares de encuestas y lugares de colecta de restos como plumas y carcazas de aves.

En cada Sitio de Muestreo se registró las condiciones de temperie reinantes: cielo despejado, parcialmente nublado o nublado. Se realizó una descripción general de la vegetación, con mayor atención en las zonas donde se colectaron restos de aves y los datos de la vegetación recopilados en el campo fueron los siguientes:(1) especies dominantes de plantas, (2) relieve: plano, pendiente moderada, pendiente pronunciada, (3) estratificación del bosque, (4) Suelo, (5) cercania a cuerpos de aguas: playas, estuario, laguna (6) drenaje, (10) fenología: floración, fructificación o en estado vegetativo. Descripciones de los sitios de muestreo son presentadas en el **Anexo 3-8.**

b.2) Metodología de evaluación:

Se utilizo una combinación de metodologías como puntos de conteo y evaluación continua de aves. No pudo realizarse una evaluación con redes de niebla, ya que lo vasto de la zona de estudio, fue necesario que nos desplazaramos en una zona de estudio muy amplia en atención a los potenciales puntos de interes del proyecto, sin embrago en un estudio futuro se recomienda el uso de redes o malla de neblina en bosque al pie de Cerro Illescas y en los bosques de los Sitios de Muestreo SM14 y SM15 en la Línea de Transmisión eléctrica.

b.3) Determinación de la Intensidad de Muestreo

Los Sitios de Muestreo fueron determinadas a través del diseño muestral en donde el número de Sitios y Esfuerzo de Muestreo, así como el Tamaño de Unidad Muestral fueron establecidos aplicando criterios cualitativos relacionados a la extensión, representatividad y sensibilidad de las unidades de vegetación presentes en la zona de estudio. En estas unidades las aves fueron uno de los taxa de fauna a ser evaluados.

Un Sitio de Muestreo sufrió modificación, el SM21 el Acantilado de Puerto Petro Perú evaluado en seis puntos de censo muy bien distribuidos en esta región en el periodo seco, pero durante el periodo húmedo solo pudieron evaluarse dos puntos de censo en un acantilado rocoso a la altura del puerto de Misky Mayo.

La intensidad Total de Muestreo de aves en el periodo húmedo fue de 98 puntos de Conteo. Esta intensidad durante el periodo seco fue de 113 Puntos de Conteo. Se tienen georreferenciados los puntos de conteo en cada periodo de evaluación (**Anexo 3-8**) y representados en mapas.

Cuadro 3.4.2.2-1. Intensidad de Muestreo de Aves durante el Periodo húmedo de abril 2012

Sitio de Muestreo	Unidad de vegetación final	Código	Localidad	No puntos censo
SM01	Vegetación halófita de playa marina	VHPM	Playa en desembocadura de Virrilá	6
SM02	Vegetación halófita de ribera de río	VHRR	Estuario Virrilá	7
SM04	Vegetación halófita de ribera de río	VHRR	Estuario Virrilá	5
SM05	Bosque seco con predominio de algarrobos	BSPA	Poza de evaporación	5
SM06	Bosque seco con predominio de sapote	BSPS	Camino a planta	4
SM07	Bosque seco con predominio de algarrobos	BSPA	Planta Mina	-
SM08	Vegetación halófita de ribera de río	VHRR	Orilla izquierda Virrilá	6
SM09	Bosque seco con predominio de algarrobos	BSPA	Poza de lodos residuales	5
SM10	Bosque seco con predominio de sapote	BSPS	8 km al este del tajo abierto	6
SM11	Bosque seco con predominio de algarrobos	BSPA	3.5 km al sureste del tajo abierto	6
SM12	Bosque seco con predominio de sapote	BSPS	Pampa Yapato	4
SM13a	Bosque seco con predominio de sapote	BSPS	cerca Punta Zapayal	3
SM13b	Vegetación halófita de ribera de río	VHRR	Punta Zapallal/La Niña	9
SM14	Bosque seco con predominio de algarrobos	BSPA	Línea de Transmisión eléctrica proyectada 138KV.	6
SM15	Bosque seco con predominio de algarrobos	BSPA	Línea de Transmisión eléctrica proyectada 138KV.	4
SM16	Vegetación halófita de ribera de río	VHRR	Línea de Transmisión eléctrica proyectada 138KV.	_
SM17	Bosque seco con predominio de algarrobos	BSPA	Al pie Cerro Illescas	6

Sitio de Muestreo	Unidad de vegetación final	Código	Localidad	No puntos censo
01440	Bosque seco con predominio de	DODA	Daniel Landing	
SM18	algarrobos	BSPA	Pampa Las Hornillas	6
	Bosque seco con predominio de		Línea de conducción de	
SM19	algarrobos	BSPA	agua de mar	6
SM21	Acantilados	Ado.	Puerto Petro Perú	2
SM22	Puerto	Pto.	Puerto Rico	2
	Total			96

Fuente: BISA, 2012

Cuadro 3.4.2.2-2. Intensidad de Muestreo de Aves durante el Periodo seco de julio 2012

Sitio de Muestreo	Unidad de vegetación final	Código	Localidad	No puntos censo
SM01	Vegetación halófita de playa marina	VHPM	Playa en desembocadura de Virrilá	6
SM02	Vegetación halófita de ribera de río	VHRR	Estuario Virrilá	7
SM04	Vegetación halófita de ribera de río	VHRR	Estuario Virrilá	5
SM05	Bosque seco con predominio de algarrobos	BSPA	Pozas de evaporación	5
SM06	Bosque seco con predominio de sapote	BSPS	Camino a planta	-
SM07	Bosque seco con predominio de algarrobos	BSPA	Planta Mina	6
SM08	Vegetación halófita de ribera de río	VHRR	Orilla izquierda Virrilá	6
SM09	Bosque seco con predominio de algarrobos	BSPA	Poza de lodos residuales	5
SM10	Bosque seco con predominio de sapote	BSPS	8km al este del tajo abierto	6
SM11	Bosque seco con predominio de algarrobos	BSPA	3.5 km al sureste del tajo abierto	6
SM12	Bosque seco con predominio de sapote	BSPS	Pampa Yapato	4
SM13a	Bosque seco con predominio de sapote	BSPS	cerca Punta Zapayal	3
SM13b	Vegetación halófita de ribera de río	VHRR	Punta Zapallal/La Niña	9
SM14	Bosque seco con predominio de algarrobos	BSPA	Línea de Transmisión eléctrica proyectada 138KV.	6
SM15	Bosque seco con predominio de algarrobos	BSPA	Línea de Transmisión eléctrica proyectada 138KV.	4
SM16	Vegetación halófita de ribera de río	VHRR	Línea de Transmisión eléctrica proyectada 138KV.	4
SM17	Bosque seco con predominio de algarrobos	BSPA	al pie Cerro Illescas	6

Sitio de Muestreo	Unidad de vegetación final	Código	Localidad	No puntos censo
	Bosque seco con predominio de			
SM18	algarrobos	BSPA	Pampa Las Hornillas	6
	Bosque seco con predominio de		Línea de conducción de	
SM19	algarrobos	BSPA	agua de mar	6
SM21	Acantilados	Ado.	Puerto Petro Perú	6
SM22	Puerto	Pto.	Puerto Rico	2
	Total	·		108

Fuente: BISA, 2012

C. Métodos estandarizados aplicados

Durante el periodo de exploración biológica correspondiente a la evaluación de la avifauna se realizó en forma cualitativa y cuantitativa. Esta comprendió un inventario completo, un censo con conteo de puntos y conteo total en los espejos de agua y una exploración ligera a la percepción de la avifauna que tienen los pobladores locales.

c.1) Evaluación cualitativa: Inventario

Se realizó un inventario completo de la avifauna en los Sitios de Muestreo. El inventario en cada Sitio de Muestreo comprendió la búsqueda intensiva en toda el área y en cada tipo de hábitat presente, observación directa de las aves con binoculares, búsqueda visual y auditiva para identificarlos por el canto, así como la identificación indirecta de las aves por medio del reconocimiento de sus huellas, nidos, madrigueras, dormideros, plumas caídas, heces y regurgitos. Todas las herramientas referidas en la identificación de las aves han sido bien documentadas como medios estandarizados, ampliamente empleados en el reconocimiento de la avifauna tanto en áreas de conservación (Davis *et al.* 1991, Mee *et al.* 2002, O´Neill 2003, Lane & Pequeño 2004, Stotz & Diaz 2007) como en proyectos de desarrollo de gran envergadura en la región andina (Angehr *et al.* 1998, Salinas *et al.* 2004) y costera (Franke &Salinas 2007, Salinas 2007, Salinas 2010, Salinas et al. 2007).

Para el inventario se había previsto colocar de redes de niebla, una aproximación exitosa en los programas de monitoreo a largo plazo (Ralph *et al.* 1981, 1993), pero lo vasto de la zona de estudio, no nos permitió colocarlas en ninguno de los periodos de estudio. Sin embargo las recomendamos extensamente para los ambientes boscosos del SM17 al pie del Cerro Illescas y los SM14 y SM15 en los bosques secos con predominio de algarrobos en la Línea de Transmisión eléctrica. Las aves fueron fotografiadas con cámaras digitales con lentes zoom. El inventario fue enriquecido con la encuesta a pobladores locales en los Sitios de Muestreo en donde fue posible.

c.2) Evaluación Cuantitativa

Para realizar una estimación cuantitativa se emplearon dos métodos de censo en los mismos Sitios de Muestreo en los que se realizó el inventario:

El método de censo empleado en toda el área de estudio fue el Conteo de puntos no limitado a la distancia (Reynolds *et al.* 1980, Buckland 1987, Bibby *et al* 1985, Bibby & Charlton 1991) el que fue aplicado en todos los tipos de hábitat presentes en los Sitios de Muestreo en un diseño al azar, en donde los puntos de censo estuvieron ubicados a lo largo de senderos, recorridos o trochas o en los únicos lugares accesibles, distanciados entre si aproximadamente por 200 metros. Este método es uno de los más eficientes para calcular la abundancia, en especial cuando la evaluación comprende, como en este caso, un área de estudio amplia, diferentes tipos de hábitats (Bibby *et al.* 1993) y las aves a evaluarse difieren en muchas características como organización social, tamaño y hábitos (Koskimies & Väisänen 1991). Una fortaleza adicional de este método fue que permite evaluar los aspectos particulares de los hábitats en cada punto de censo y registrar a las especies tanto por la observación directa como indirecta como por sus huellas, nidos, cantos y otras señales (Salinas *et al.* 2007).

Se establecieron de dos a nueve puntos de censo en cada Sitio de Muestreo donde el método de conteo de puntos fue aplicado, el número de puntos fue

proporcional a la extensión del Sitio de estudio o limitado por la capacidad de desplazarse en el sitio o tiempo disponible para la evaluación. El tiempo de conteo empleado en cada punto de censo fue de 10 minutos, el que ha sido identificado como conveniente con esta metodología en otros ambientes costeros (Salinas *et al.* 2007), con un intervalo de al menos dos minuto antes de empezar el censo, para que cese el disturbio que origina el arribo al punto de censo. En cada Sitio de muestreo la evaluación fue conducida por dos ornitólogas.

Los puntos de censo, fueron georreferenciados y caracterizados extensamente en cuanto al tipo de vegetación, suelo, pendiente u orientación del punto, así como condiciones ambientales en el momento de la evaluación, de modo que en cada Sitio de Muestreo los mismos puntos fueron evaluados en los dos eventos de evaluación de 2012.

En los puntos de censo, luego del periodo de conteo se realizaron observaciones adicionales para registrar algún tipo de conducta relacionada con la reproducción (cortejo, displays, parejas, pichones, entre otros). Adicionalmente, se realizó la búsqueda de nidos con el fin de ubicar los lugares seleccionados para éstos, así como los elementos más importantes para su construcción.

En el método de Conteo de Puntos No Limitado a la Distancia (Bibby et al., 1993) no se establece un radio fijo al inicio del trabajo de campo ya que se registra a todas las aves que se pueden detectar en el área, pues el censador hace las veces de un centro de detección de actividad dentro de un área semiesférica. La determinación de un valor de radio de avistamiento (r) esperaba ser determinado a partir de los datos de distancias obtenidos en el muestreo (Bibby et al., 1993), sin embargo no fue posible determinar los valores de r a partir de un acercamiento gráfico del porcentaje acumulativo de avistamientos (Salinas et al. 2007).

Los datos obtenidos del censo serán utilizados para caracterizar en a) composición, b) abundancia, (Bibby et al., 1993) y c) diversidad de la avifauna de

cada Estación de Muestreo evaluado. Se empleará el índice de diversidad de Shanonn-Wiener (H') y el de dominancia de Simpson (1-D) (Krebs 1998, Magurran 1991).

La estimación cuantitativa de la avifauna de los humedales costeros estuario Virrilá y La Niña se realizó con el Conteo Total que fue realizado para estimar el número de aves sobre el espejo de agua (Bibby et al. 1993). En el Conteo Total las aves fueron registradas por observación directa en puntos georreferenciados. Los puntos de conteo total en estos humedales fueron determinados usando un mapa básico a escala del espejo de agua o espejos de agua presentes en el área de estudio, los cuales fueron georreferenciados, caracterizados de modo general y ubicados en el mapa, de modo semejante a la evaluación de aves en espejos de agua en humedales costeros (Salinas et al. 2008). El Conteo Total fue empleado en los cuerpos de agua del Estuario de Virrilá y en La Niña; en los sitios de Wirrilá y en SE La Niña en el SM13b.

Todas las aves del área de estudio reconocidas en el inventario y censo fueron identificadas inequívocamente hasta el nivel de especie y algunas hasta el nivel de subespecie. Finalmente la información obtenida con todas estas aproximaciones permitió brindar una imagen más completa de la abundancia de las especies de aves presentes en el área del proyecto.

D. Sistematización de información: post campo

d.1) Cálculo de Diversidad:

Indice de Shannon-Weaver (H'): Los supuestos de este índice indican que cada unidad de muestreo tenga S clases diferentes de elementos (especies) y en los que cada clase de elementos tenga una probabilidad de ocurrencia Pi, se tiene la siguiente expresión:

$$H = -\sum Pi * log_2 Pi$$

$$Pi = ni/N$$

Dónde: ni: abundancia para una especie

N: el número total de individuos

Índice de Simpson (1-D): Este índice examina la probabilidad de que dos individuos cualesquiera extraídos al azar en una comunidad infinitamente grande pertenezcan a diferentes especies. Es una medida de la igualdad de distribución, o de heterogeneidad de especies y homogeneidad poblacional entre ellas. Se expresa según la siguiente formula:

$$D = \sum Pi^2$$

Dónde: Pi es la proporción de individuos de la i-ésima especies. A medida que D se incrementa, la diversidad decrece y el índice de Simpson es por lo tanto expresado normalmente como 1-D (Magurran, 1988).

La clasificación taxonómica utilizada para la nomenclatura científica de los órdenes, familias, géneros y especies, fue la Lista de Aves 2012 del SACC (South American Classification Committee), la Lista de las Aves Del Perú 2012 por Manuel Plenge y también la del libro Aves del Perú 2010 de Schulemberg.

La condición de abundancia cualitativa (común, poco común o raro) señalada para algunas especies se estableció de acuerdo a la bibliografía especializada (Stolz et al. 1996), se describe para toda el área de estudio las especies incluidas en las categorías de conservación nacional (D.S. 034-2010-AG), las especies incluidas en las categorías de conservación internacional señaladas por la Unión Internacional para la Conservación de la naturaleza (IUCN), los apéndices de la Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES), las Áreas de Endemismo de Aves (EBAs según Statersfield et al. 1988), la condición de ave indicadora de bioma o región

biogeografía (BIOMA según Stolz et al. 1996), haciendo especial énfasis en la avifauna de los cuerpos de agua como lagunas que son de gran importancia en el área evaluada

3.4.2.2.5 Resultados

A continuación se describe la composición de especies y abundancia de las aves registradas de modo general en toda el área de estudio y luego por cada unidad de vegetación.

A. Avifauna del área de estudio

Se registró en toda el área de estudio 166 especies distribuidas en 21 órdenes y 52 familias. Estas especies fueron registradas a través de los puntos de conteo como en los avistamientos y la colecta de evidencias indirectas dentro del área evaluada.

Los órdenes con mayor número de familias son los Passeriformes con 15 familias y 46 especies, el orden Charadriiformes con nueve familias y 47 especies y Pelecaniformes con tres familias y 11 especies; el resto de órdenes presenta un menor número de familias y especies.

En el área de estudio la riqueza de especies de los bosques secos dominados por algarrobos o por sapote estuvo caracterizada por el dominio de los paseriformes que en la zona de estudio comprendió 46 especies entre Furnariidae, Thamnophilidae, Melanopareidae, Tyrannidae, Hirundinidae, Motacillidae, Troglodytidae, Mimidae, Polioptilidae, Corvidae, Passeridae, Parulidae, Thraupidae, Emberizidae e Icteridae, en donde las familias Tyraniidae y Thraupidae reunían a la mayoría de especies.

La riqueza de especies de aves de ambientes marinos y de humedales se sustenta en la riqueza de especies del orden Charadriiformes, en donde las familias Haematopodidae, Recurvirostridae, Burhinidae, Charadriidae, Scolopacidae, Thinocoridae, Stercorariidae, Laridae y Rhynchopidae reunieron a ostreros, alcaravanes, chorlos, gaviotas, gaviotines y ralladores. El otro orden más importante en estos ambientes acuáticos fue el Pelecaniformes que comprendió Pelecanidae, Ardeidae y Threskiornithidae, en donde las garzas fueron las de mayor riqueza de especies (cuadro 3.4.2.2-3).

Cuadro 3.4.2.2-3. Especies de aves registradas en el toda el área de estudio durante ambos periodos de evaluación en el 2012

Orden	Familia	Especie	Nombre común 2012	Nombre inglés
Anseriformes	Anatidae	Anas bahamensis	Pato Gargantillo	White-cheeked Pintail
Anseriformes	Anatidae	Anas discors	Pato de Ala Azul	Blue-winged Teal
Anseriformes	Anatidae	Anas cyanoptera	Pato Colorado	Cinnamon Teal
Podicipediformes	Podicipedidae	Rollandia rolland	Zambullidor Pimpollo	White-tufted Grebe
Podicipediformes	Podicipedidae	Tachybaptus dominicus	Zambullidor Menor	Least Grebe
Podicipediformes	Podicipedidae	Podilymbus podiceps	Zambullidor de Pico Grueso	Pied-billed Grebe
Podicipediformes	Podicipedidae	Podiceps major	Zambullidor Grande	Great Grebe
Phoenicopteriformes	Phoenicopteridae	Phoenicopterus chilensis	Flamenco Chileno	Chilean Flamingo
Sphenisciformes	Spheniscidae	Spheniscus humboldti	Pingüino de Humboldt	Humboldt Penguin
Procellariformes	Diomedeidae	Phoebastria irrorata	Albatros de las Galápagos	Waved Albatross
Procellariformes	Procellaridae	Pterodroma phaeopygia	Petrel de las Galápagos	Galapagos Petrel (Dark-rumped Petrel)
Procellariformes	Procellaridae	Procellaria aequinoctialis	Petrel de Mentón Blanco	White-chinned Petrel
Procellariformes	Procellaridae	Puffinus bulleri	Pardela de Buller	Buller's Shearwater
Procellariformes	Procellaridae	Puffinus griseus	Pardela Oscura	Sooty Shearwater
Procellariformes	Procellaridae	Puffinus creatopus	Pardela de Pata Rosada	Pink-footed Shearwater
Procellariformes	Hydrobatidae	Oceanites gracilis	Golondrina de Mar Chica	Elliot's (White-vented) Storm-Petrel [White-vented (Elliot's) Storm-Petrel]
Procellariformes	Hydrobatidae	Oceanodroma tethys	Golondrina de Mar Peruana	Wedge-rumped Storm-Petrel
Procellariformes	Hydrobatidae	Oceanodroma markhami	Golondrina de Mar de Markham	Markham's Storm-Petrel
Procellariformes	Hydrobatidae	Oceanodroma hornbyi	Golondrina de Mar Acollarada	Ringed (Hornby's) Storm-Petrel
Procellariformes	Hydrobatidae	Oceanodroma melania	Golondrina de Mar Negra	Black Storm-Petrel
Suliformes	Fregatidae	Fregata magnificens	Avefragata Magnífica	Magnificent Frigatebird
Suliformes	Sulidae	Sula nebouxii	Piquero de Pata Azul	Blue-footed Booby
Suliformes	Sulidae	Sula variegata	Piquero Peruano	Peruvian Booby
Suliformes	Phalacrocoracidae	Phalacrocorax brasilianus	Cormorán Neotropical	Neotropic Cormorant
Suliformes	Phalacrocoracidae	Phalacrocorax bougainvillii	Cormorán Guanay	Guanay Cormorant
Pelecaniformes	Pelecanidae	Pelecanus occidentalis	Pelícano Pardo	Brown Pelican
Pelecaniformes	Pelecanidae	Pelecanus thagus	Pelícano peruano	Peruvian Pelican
Pelecaniformes	Ardeidae	Nycticorax nycticorax	Huaco Común	Black-crowned Night-Heron

Orden	Familia	Especie	Nombre común 2012	Nombre inglés
Pelecaniformes	Ardeidae	Bubulcus ibis	Garcita Bueyera	Cattle Egret
Pelecaniformes	Ardeidae	Ardea cocoi	Garza Cuca	Cocoi Heron
Pelecaniformes	Ardeidae	Ardea alba	Garza Grande	Great Egret
Pelecaniformes	Ardeidae	Egretta thula	Garcita Blanca	Snowy Egret
Pelecaniformes	Ardeidae	Egretta caerulea	Garcita Azul	Little Blue Heron
Pelecaniformes	Threskiornithidae	Eudocimus albus	Corocoro Blanco	White Ibis
Pelecaniformes	Threskiornithidae	Plegadis ridgwayi	Ibis de la Puna (Yanavico)	Puna Ibis
Pelecaniformes	Threskiornithidae	Platalea ajaja	Espátula rosada	Roseate Spoonbill
Cathartiformes	Cathartidae	Cathartes aura	Gallinazo de Cabeza Roja	Turkey Vulture
Cathartiformes	Cathartidae	Coragyps atratus	Gallinazo de Cabeza Negra	Black Vulture
Accipitriformes	Pandionidae	Pandion haliaetus	Águila pescadora	Osprey
Accipitriformes	Accipitridae	Circus cinereus	Aguilucho Cenizo	Cinereous Harrier
Accipitriformes	Accipitridae	Buteogallus meridionalis	Gavilán Sabanero	Savanna Hawk
Accipitriformes	Accipitridae	Parabuteo unicinctus	Gavilán Mixto	Harris's (Bay-winged) Hawk
Accipitriformes	Accipitridae	Geranoaetus polyosoma	Aguilucho Variable	Variable Hawk
Accipitriformes	Accipitridae	Geranoaetus melanoleucus	Aguilucho de Pecho Negro	Black-chested Buzzard-Eagle
Gruiformes	Rallidae	Pardirallus sanguinolentus	Rascón Plomizo	Plumbeous Rail
Gruiformes	Rallidae	Gallinula galeata	Polla de Agua Común	Common Gallinule
Gruiformes	Rallidae	Fulica ardesiaca	Gallareta Andina	Slate-colored (Andean) Coot
Charadriiformes	Charadriidae	Pluvialis dominica	Chorlo Dorado Americano	American Golden-Plover
Charadriiformes	Charadriidae	Pluvialis squatarola	Chorlo gris	Black-bellied Plover
Charadriiformes	Charadriidae	Charadrius semipalmatus	Chorlo semipalmado	Semipalmated Plover
Charadriiformes	Charadriidae	Charadrius wilsonia	Chorlo de Pico Grueso	Wilson's (Thick-billed) Plover [Wilson's Plover]
Charadriiformes	Charadriidae	Charadrius vociferus	Chorlo Gritón	Killdeer
Charadriiformes	Charadriidae	Charadrius nivosus	Chorlo Nevado	Snowy Plover
Charadriiformes	Charadriidae	Charadrius collaris	Chorlo Acollarado	Collared Plover
Charadriiformes	Charadriidae	Oreopholus ruficollis	Chorlo de Campo	Tawny-throated Dotterel
Charadriiformes	Haematopodidae	Haematopus palliatus	Ostrero americano	American Oystercatcher
Charadriiformes	Haematopodidae	Haematopus ater	Ostrero negruzco	Blackish Oystercatcher
Charadriiformes	Recurvirostridae	Himantopus mexicanus	Cigüeñuela de Cuello Negro	Black-necked Stilt
Charadriiformes	Burhinidae	Burhinus superciliaris	Alcaraván Huerequeque	Peruvian Thick-knee

Orden	Familia	Especie	Nombre común 2012	Nombre inglés
Charadriiformes	Scolopacidae	Limnodromus griseus	Agujeta de Pico Corto	Short-billed Dowitcher
Charadriiformes	Scolopacidae	Limosa haemastica	Aguja de Mar	Hudsonian Godwit
Charadriiformes	Scolopacidae	Numenius phaeopus	Zarapito Trinador	Whimbrel
Charadriiformes	Scolopacidae	Actitis macularius	Playero Coleador	Spotted Sandpiper
Charadriiformes	Scolopacidae	Tringa melanoleuca	Playero Pata Amarilla Mayor	Greater Yellowlegs
Charadriiformes	Scolopacidae	Tringa flavipes	Playero Pata Amarilla Menor	Lesser Yellowlegs
Charadriiformes	Scolopacidae	Tringa solitaria	Playero Solitario	Solitary Sandpiper
Charadriiformes	Scolopacidae	Tringa semipalmata	Playero de Ala Blanca	Willet
Charadriiformes	Scolopacidae	Calidris canutus	Playero de Pecho Rufo	Red Knot
Charadriiformes	Scolopacidae	Calidris alba	Playero arenero	Sanderling
Charadriiformes	Scolopacidae	Calidris pusila	Playerito Semipalmado	Semipalmated Sandpiper
Charadriiformes	Scolopacidae	Calidris mauri	Playerito occidental	Western Sandpiper
Charadriiformes	Scolopacidae	Calidris minutilla	Playerito Menudo	Least Sandpiper
Charadriiformes	Scolopacidae	Calidris fuscicollis	Playerito de Lomo Blanco	White-rumped Sandpiper
Charadriiformes	Scolopacidae	Calidris bairdii	Playerito de Baird	Baird's Sandpiper
Charadriiformes	Scolopacidae	Phalaropus tricolor	Faláropo Tricolor	Wilson's Phalarope
Charadriiformes	Scolopacidae	Phalaropus lobatus	Faláropo de Pico Fino	Red-necked Phalarope
Charadriiformes	Thinocoridae	Thinocorus rumicivorus	Agachona Chica	Least Seedsnipe
Charadriiformes	Stercorariidae	Stercorarius pomarinus	Salteador Pomarino	Pomarine Jaeger
Charadriiformes	Laridae	Xema sabini	Gaviota de Sabine	Sabine's Gull
		Chroicocephalus		
Charadriiformes	Laridae	cirrocephalus	Gaviota de Capucha Gris	Gray-hooded Gull
Charadriiformes	Laridae	Leucophaeus modestus	Gaviota gris	Gray Gull
Charadriiformes	Laridae	Leucophaeus atricilla	Gaviota Reidora	Laughing Gull
Charadriiformes	Laridae	Leucophaeus pipixcan	Gaviota de Franklin	Franklin's Gull
Charadriiformes	Laridae	Larus belcheri	Gaviota peruana	Belcher's (Band-tailed) Gull
Charadriiformes	Laridae	Larus dominicanus	Gaviota dominicana	Kelp Gull
Charadriiformes	Laridae	Sternula lorata	Gaviotín Peruano	Peruvian Tern
Charadriiformes	Laridae	Gelochelidon nilotica	Gaviotín de Pico Negro	Gull-billed Tern
Charadriiformes	Laridae	Larosterna inca	Gaviotin Zarcillo	Inca Tern
Charadriiformes	Laridae	Sterna hirundo	Gaviotín Común	Common Tern
Charadriiformes	Laridae	Sterna hirundinacea	Gaviotín Sudamericano	South American Tern

Orden	Familia	Especie	Nombre común 2012	Nombre inglés
Charadriiformes	Laridae	Thalasseus elegans	Gaviotín Elegante	Elegant Tern
Charadriiformes	Laridae	Thalasseus sandvicensis	Gaviotín de Pata Negra	Sandwinch Tern
Charadriiformes	Laridae	Thalasseus maximus	Gaviotín Real	Royal Tern
Charadriiformes	Rhynchopidae	Rynchops niger	Rayador Negro	Black Skimmer
Columbiformes	Columbidae	Columbina cruziana	Tortolita Peruana	Croaking Ground-Dove
Columbiformes	Columbidae	Claravis pretiosa	Tortolita Azul	Blue Ground-Dove
Columbiformes	Columbidae	Columba livia	Paloma Doméstica	Rock Pigeon (Rock Dove)
Columbiformes	Columbidae	Zenaida meloda	Tórtola Melódica	West Peruvian Dove
Columbiformes	Columbidae	Zenaida auriculata	Tortola Orejuda	Eared Dove
Cuculiformes	Cuculidae	Crotophaga sulcirostris	Garrapatero de Pico Estriado	Groove-billed Ani
Strigiformes	Tytonidae	Tyto alba	Lechuza de Campanario	Barn Owl
Strigiformes	Strigidae	Glaucidium peruanum	Lechucita Peruana	Peruvian Pygmy-Owl
Strigiformes	Strigidae	Athene cunicularia	Lechuza Terrestre	Burrowing Owl
Strigiformes	Strigidae	Asio flammeus	Lechuza de Oreja Corta	Short-eared Owl
Caprimulgiformes	Caprimulgidae	Chordeiles acutipennis	Chotacabras Menor	Lesser Nighthawk
Caprimulgiformes	Caprimulgidae	Caprimulgus longirostris	Chotacabras de Ala Bandeada	Band-winged Nightjar
Caprimulgiformes	Caprimulgidae	Caprimulgus anthonyi	Chotacabras de Matorral	Scrub Nightjar
Apodiformes	Trochilidae	Myrtis fanny	Estrellita de Collar Púrpura	Purple-collared Woodstar
Apodiformes	Trochilidae	Rhodopis vesper	Colibrí de Oasis	Oasis Hummingbird
Apodiformes	Trochilidae	Myrmia micrura	Estrellita de Cola Corta	Short-tailed Woodstar
Apodiformes	Trochilidae	Amazilia amazilia	Colibrí de Vientre Rufo	Amazilia Hummingbird
Coraciiformes	Alcedinidae	Megaceryle torquata	Martín Pescador Grande	Ringed Kingfisher
Piciformes	Picidae	Veniliornis callonotus	Carpintero Dorsiescarlata	Scarlet-backed Woodpecker
Piciformes	Picidae	Colaptes rubiginosus	Carpintero Olividorado	Golden-olive Woodpecker
Falconiformes	Falconidae	Caracara cheriway	Caracara Crestado	Crested Caracara
Falconiformes	Falconidae	Falco sparverius	Cernícalo Americano	American Kestrel
Falconiformes	Falconidae	Falco femoralis	Halcón Aplomado	Aplomado Falcon
Falconiformes	Falconidae	Falco peregrinus	Halcón Peregrino	Peregrine Falcon
Psittaciformes	Psittacidae	Aratinga erythrogenys	Cotorra de Cabeza Roja	Red-masked Parakeet
Psittaciformes	Psittacidae	Forpus coelestis	Periquito Esmeralda	Pacific Parrotlet
Passeriformes	Thamnophilidae	Thamnophilus bernardi	Batará Acollarado	Collared Antshrike
Passeriformes	Melanopareiidae	Melanopareia elegans	Pecholuna Elegante	Elegant Crescentches

Orden	Familia	Especie	Nombre común 2012	Nombre inglés
Passeriformes	Furnariidae	Geositta peruviana	Minero Peruano	Coastal Miner
Passeriformes	Furnariidae	Furnarius leucopus	Hornero Patipálida	Pale-legged Hornero
Passeriformes	Furnariidae	Furnarius leucopus	Hornero Patipálida	Pale-legged Hornero
Passeriformes	Furnariidae	Synallaxis stictothorax	Colaespina Acollarada	Necklaced Spinetail
Passeriformes	Tyrannidae	Myiopagis subplacens	Elainia del Pacífico	Pacific Elaenia
Passeriformes	Tyrannidae	Camptostoma obsoletum	Mosquerito Silbador	Southern Beardless-Tyrannulet
Passeriformes	Tyrannidae	Phaeomyias murina	Moscareta Murino	Mouse-colored Tyrannulet
Passeriformes	Tyrannidae	Euscarthmus meloryphus	Tirano-Pigmeo de Corona Leonada	Tawny-crowned Pygmy-Tyrant
Passeriformes	Tyrannidae	Myiophobus fasciatus	Mosquerito de Pecho Rayado	Bran-colored Flycatcher
Passeriformes	Tyrannidae	Pyrocephalus rubinus	Mosquero Bermellón (Turtupilín)	Vermilion Flycatcher
Passeriformes	Tyrannidae	Tumbezia salvini	Pitajo de Tumbes	Tumbes Tyrant
Passeriformes	Tyrannidae	Muscigralla brevicauda	Dormilona de Cola Corta	Short-tailed Field-Tyrant
Passeriformes	Tyrannidae	Tyrannus melancholicus	Tirano Tropical	Tropical Kingbird
Passeriformes	Corvidae	Cyanocorax mystacalis	Urraca Coliblanca	White-tailed Jay
Passeriformes	Hirundinidae	Pygochelidon cyanoleuca peruviana	Golondrina Azul y Blanca (Santa rosita)	Blue-and-white Swallow
Passeriformes	Hirundinidae	Progne chalybea	Martín Pechigris	Gray-breasted Martin
Passeriformes	Hirundinidae	Petrochelidon rufocollaris	Golondrina de Collar Castaño	Chestnut-collared Swallow
Passeriformes	Troglodytidae	Troglodytes aedon	Cucarachero Común	House Wren
Passeriformes	Troglodytidae	Campylorhynchus fasciatus	Cucarachero Ondeado	Fasciated Wren
Passeriformes	Troglodytidae	Canthorchilus superciliars	Cucarachero Cejón	Superciliated Wren
Passeriformes	Polioptilidae	Polioptila plumbea bilineata	Perlita Tropical	Tropical Gnatcatcher
Passeriformes	Mimidae	Mimus longicaudatus	Calandria de Cola Larga (Chisco o Zoña)	Long-tailed Mockingbird
Passeriformes	Motacillidae	Anthus lutescens	Cachirla Amarillenta	Yellowish Pipit
Passeriformes	Thraupidae	Thraupis episcopus	Tangara Azuleja (Violinista)	Blue-gray Tanager
Passeriformes	Thraupidae	Conirostrum cinereum	Pico-de-Cono Cinereo, (Mielerito cineréo, Pico de cono cenizo)	Cinereous Conebill
Passeriformes	Thraupidae	Piezorhina cinerea	Frigilo Cinéreo	Cinereous Finch
Passeriformes	Thraupidae	Poospiza hispaniolensis	Monterita Acollarada	Collared Warbling-Finch
Passeriformes	Thraupidae	Sicalis flaveola	Chirigüe Azafranado	Saffron Finch

Orden	Familia	Especie	Nombre común 2012	Nombre inglés
Passeriformes	Thraupidae	Sicalis taczanowskii	Chirigüe Gargantiazufrada	Sulphur-throated Finch
Passeriformes	Thraupidae	Volatinia jacarina	Semillerito Negro Azulado (Saltapalito)	Blue-black Grassquit
Passeriformes	Thraupidae	Sporophila peruviana	Espiguero Pico de Loro	Parrot-billed Seedeater
Passeriformes	Thraupidae	Sporophila simplex	Espiguero Simple	Drab Seedeater
Passeriformes	Thraupidae	Sporophila telasco	Espiguero de Garganta Castaña	Chestnut-throated Seedeater
Passeriformes	Thraupidae	Coereba flaveola	Mielero Común	Bananaquit
Passeriformes	Thraupidae	Tiaris obscurus	Semillero Pardo	Dull-colored Grassquit
Passeriformes	Incertae sedis	Saltator striatipectus	Saltador Rayado	Streaked Saltator
Passeriformes	Emberizidae	Zonotrichia capensis	Gorrión de Collar Rufo (Pichisanka)	Rufous-collared Sparrow
Passeriformes	Emberizidae	Rhynchospiza stolzmanni	Gorrión de Tumbes	Tumbes Sparrow
Passeriformes	Parulidae	Parula pitiayumi	Parula Tropical	Tropical Parula
Passeriformes	Icteridae	Icterus graceannae	Bolsero Filiblanco	White-edged Oriole
Passeriformes	Icteridae	Dives warszewiczi	Tordo de Matorral	Scrub Blackbird
Passeriformes	Icteridae	Molothrus bonariensis	Tordo Brilloso (Tordo parásito)	Shiny Cowbird
Passeriformes	Icteridae	Sturnella bellicosa	Pecho Colorado Peruano	Peruvian Meadowlark
Passeriformes	Passeridae	Passer domesticus	Gorrión Casero	House Sparrow

Fuente: BISA, 2012

Orden Taxonómico según SACC 2012, Especies según Plenge 2012, Nombres en inglés: Según Plenge 2012, Schulenberg *et al.* 2010, Clements & Shany, 2001. Nombres español: Según Plenge 2012, Schulenberg *et al.* 2010, Clements & Shany, 2001.

a.1) Periodo Húmedo

Se registró en toda el área de estudio, durante el periodo húmedo 154 especies distribuidas en 11 órdenes en donde Passeriformes con Tyranidos y Thraupidos fueron los más ricos en especies en los ambientes boscosos y los Charadriiformes y Pelecaniformes fueron los órdenes con mayor riqueza en el ámbito del Estuario Virrilá, el humedal La Niña y el litoral marino.

En este periodo se observaron 51 especies reportadas únicamente en este periodo (cuadro 3.4.2.2-4), en donde 17 de ellas eran migrantes boreales y presentes en el área de estudio durante su migración en esta parte del hemisferio: Halcón Peregrino *Falco peregrinus*, Chorlo Dorado Americano *Pluvialis dominica*, Chorlo gris *Pluvialis squatarola*, Chorlo semipalmado *Charadrius semipalmatus*, Agujeta de Pico Corto *Limnodromus griseus*, Playero Solitario *Tringa solitaria*, Playero Coleador *Actitis macularius*, Playero arenero *Calidris alba*, Playerito Semipalmado *Calidris pusila*, Playerito occidental *Calidris mauri*, Playerito Menudo *Calidris minutilla*, Playerito de Baird *Calidris bairdii*, Faláropo Tricolor *Phalaropus tricolor*, Faláropo de Pico Fino *Phalaropus lobatus*, Gaviota de Franklin *Leucophaeus pipixcan*, Gaviota de Sabine *Xema sabin y*, Gaviotín Común *Sterna hirundo*. Solo una especie migratoria austral fue registrada en este periodo la Golondrina de Mar Acollarada *Oceanodroma hornbyi*.

a.2) Periodo Seco

Se registró en toda el área de estudio durante el periodo seco 115 especies distribuidas en 19 órdenes, de los cuales el Passeriformes y el Charadriiformes reunían a la mayor riqueza de especies con 37 y 24 respectivamente.

Durante el periodo seco se observaron 12 especies exclusivas a este periodo (cuadro 3.4.2.2-4) entre algunas especies poco frecuentes en la zona de estudio como el Petrel de las Galápagos *Pterodroma phaeopygia*, la Pardela de Buller *Puffinus bulleri*, la Espátula rosada *Platalea ajaja*, otras adaptadas a ambientes observados en ambientes escasamente evaluados en el periodo húmedo como

fue el litoral rocoso en donde se observó al Ostrero negruzco *Haematopus ater*. Otras de las especies observadas únicamente en el periodo seco fueron migratoria, en su mayoría migrantes australes como era predecible, como el Petrel de Mentón Blanco *Procellaria aequinoctialis*, la Pardela Oscura *Puffinus griseus* y el Gaviotín Sudamericano *Sterna hirundinacea*; sin embargo una especie migratoria boreal fue también observada, el pato de ala azul *Anas discors*.

Cuadro 3.4.2.2-4. Especies de aves registradas en el toda el área de estudio durante los periodos húmedo y seco de abril y julio de 2012

			Perio	Periodo		Rango altitudinal	
Familia	Especie	Nombre común	Húmedo	Seco	Min	Max	
Anatidae	Anas bahamensis	Pato Gargantillo	X	Х	0	0	
Anatidae	Anas discors	Pato de Ala Azul		Х	0	2600	
Anatidae	Anas cyanoptera	Pato Colorado	Х	Х	0	4600	
Podicipedidae	Rollandia rolland	Zambullidor Pimpollo	Х		0	4500	
Podicipedidae	Tachybaptus dominicus	Zambullidor Menor	X		0	2600	
Podicipedidae	Podilymbus podiceps	Zambullidor de Pico Grueso	Х	Х	0	3100	
Podicipedidae	Podiceps major	Zambullidor Grande	Х	Х	0	1200	
Phoenicopteridae	Phoenicopterus chilensis	Flamenco Chileno	Х	Х	0	4400	
Spheniscidae	Spheniscus humboldti	Pingüino de Humboldt	X		0	0	
Diomedeidae	Phoebastria irrorata	Albatros de las Galápagos	Х		0	0	
Procellaridae	Pterodroma phaeopygia	Petrel de las Galápagos		Х	0	0	
Procellaridae	Procellaria aequinoctialis	Petrel de Mentón Blanco		Х	0	0	
Procellaridae	Puffinus bulleri	Pardela de Buller		Х			
Procellaridae	Puffinus griseus	Pardela Oscura		Х	0	0	
Procellaridae	Puffinus creatopus	Pardela de Pata Rosada	Х	Х	0	0	
Hydrobatidae	Oceanites gracilis	Golondrina de Mar Chica	Х	Х	0	0	
Hydrobatidae	Oceanodroma tethys	Golondrina de Mar Peruana	X	Χ	0	0	
Hydrobatidae	Oceanodroma markhami	Golondrina de Mar de Markham	Х		0	0	
Hydrobatidae	Oceanodroma hornbyi	Golondrina de Mar Acollarada	Х		0	0	
Hydrobatidae	Oceanodroma melania	Golondrina de Mar Negra	Х		0	0	
Fregatidae	Fregata magnificens	Avefragata Magnífica	Х	Х	0	0	
Sulidae	Sula nebouxii	Piquero de Pata Azul	X	Х	0	0	
Sulidae	Sula variegata	Piquero Peruano	X	Х	0	0	
Phalacrocoracidae	Phalacrocorax brasilianus	Cormorán Neotropical	Х	Х	0	3500	
Phalacrocoracidae	Phalacrocorax bougainvillii	Cormorán Guanay	Х	Х	0	0	
Pelecanidae	Pelecanus occidentalis	Pelícano Pardo	X	Х	0	0	
Pelecanidae	Pelecanus thagus	Pelícano peruano	Х	Х	0	0	
Ardeidae	Nycticorax nycticorax	Huaco Común	Х	Х	0	4400	
Ardeidae	Bubulcus ibis	Garcita Bueyera	X	Х	0	2200	

			Peri	odo	Rango altitudinal	
Familia	Especie	Nombre común	Húmedo	Seco	Min	Max
Ardeidae	Ardea cocoi	Garza Cuca	Х	Х	0	900
Ardeidae	Ardea alba	Garza Grande	X	Х	0	1500
Ardeidae	Egretta thula	Garcita Blanca	X	Х	0	1500
Ardeidae	Egretta caerulea	Garcita Azul	X	Х	0	1500
Threskiornithidae	Eudocimus albus	Corocoro Blanco	X		0	0
Threskiornithidae	Plegadis ridgwayi	Ibis de la Puna (Yanavico)	X	Х	3100	4800
Threskiornithidae	Platalea ajaja	Espátula rosada		Х	0	800
Cathartidae	Cathartes aura	Gallinazo de Cabeza Roja	X	Х	0	2500
Cathartidae	Coragyps atratus	Gallinazo de Cabeza Negra	X	Х	0	2800
Pandionidae	Pandion haliaetus	Águila pescadora	X	Х	0	0
Accipitridae	Circus cinereus	Aguilucho Cenizo	X	Х	0	4400
Accipitridae	Buteogallus meridionalis	Gavilán Sabanero	X		0	1200
Accipitridae	Parabuteo unicinctus	Gavilán Mixto	X	Х	0	2500
Accipitridae	Geranoaetus polyosoma	Aguilucho Variable	X	Х	0	5000
Accipitridae	Geranoaetus melanoleucus	Aguilucho de Pecho Negro	X		0	4400
Rallidae	Pardirallus sanguinolentus	Rascón Plomizo	X	Х	0	4500
Rallidae	Gallinula galeata	Polla de Agua Común	X	Х	0	4200
Rallidae	Fulica ardesiaca	Gallareta Andina	X	Х	2000	4500
Charadriidae	Pluvialis dominica	Chorlo Dorado Americano	X		0	800
Charadriidae	Pluvialis squatarola	Chorlo gris	X		0	0
Charadriidae	Charadrius semipalmatus	Chorlo semipalmado	X		0	0
Charadriidae	Charadrius wilsonia	Chorlo de Pico Grueso	X	Х	0	0
Charadriidae	Charadrius vociferus	Chorlo Gritón	X	Χ	0	2500
Charadriidae	Charadrius nivosus	Chorlo Nevado	X	Х	0	0
Charadriidae	Charadrius collaris	Chorlo Acollarado		Х	0	800
Charadriidae	Oreopholus ruficollis	Chorlo de Campo	X	Х	0	4500
Haematopodidae	Haematopus palliatus	Ostrero americano	X	Х	0	0
Haematopodidae	Haematopus ater	Ostrero negruzco		Х	0	0
Recurvirostridae	Himantopus mexicanus	Cigüeñuela de Cuello Negro	X	Х	0	1600
Burhinidae	Burhinus superciliaris	Alcaraván Huerequeque	X	Х	0	2500
Scolopacidae	Limnodromus griseus	Agujeta de Pico Corto	X		0	0

	Especie	Nombre común	Periodo		Rango altitudinal	
Familia			Húmedo	Seco	Min	Max
Scolopacidae	Limosa haemastica	Aguja de Mar	X		0	1000
Scolopacidae	Numenius phaeopus	Zarapito Trinador	X	Х	0	0
Scolopacidae	Actitis macularius	Playero Coleador	X		0	2200
Scolopacidae	Tringa melanoleuca	Playero Pata Amarilla Mayor	X	Х	0	4300
Scolopacidae	Tringa flavipes	Playero Pata Amarilla Menor	X	Х	0	4000
Scolopacidae	Tringa solitaria	Playero Solitario	X		0	1500
Scolopacidae	Tringa semipalmata	Playero de Ala Blanca	X		0	0
Scolopacidae	Calidris canutus	Playero de Pecho Rufo	X		0	0
Scolopacidae	Calidris alba	Playero arenero	X		0	0
Scolopacidae	Calidris pusila	Playerito Semipalmado	X		0	0
Scolopacidae	Calidris mauri	Playerito occidental	X		0	1200
Scolopacidae	Calidris minutilla	Playerito Menudo	X		0	2200
Scolopacidae	Calidris fuscicollis	Playerito de Lomo Blanco	X		0	1200
Scolopacidae	Calidris bairdii	Playerito de Baird	X		0	4600
Scolopacidae	Phalaropus tricolor	Faláropo Tricolor	X		0	4100
Scolopacidae	Phalaropus lobatus	Faláropo de Pico Fino	X			
Thinocoridae	Thinocorus rumicivorus	Agachona Chica	X		0	3700
Stercorariidae	Stercorarius pomarinus	Salteador Pomarino	X			
Laridae	Xema sabini	Gaviota de Sabine	X			
Laridae	Chroicocephalus cirrocephalus	Gaviota de Capucha Gris	X	Χ	0	1000
Laridae	Leucophaeus modestus	Gaviota gris	X	Х	0	0
Laridae	Leucophaeus atricilla	Gaviota Reidora		Χ	0	0
Laridae	Leucophaeus pipixcan	Gaviota de Franklin	X		0	0
Laridae	Larus belcheri	Gaviota peruana	X	Χ	0	0
Laridae	Larus dominicanus	Gaviota dominicana	X	Χ	0	0
Laridae	Sternula Iorata	Gaviotín Peruano	X	Χ	0	0
Laridae	Gelochelidon nilotica	Gaviotín de Pico Negro	X		0	0
Laridae	Larosterna inca	Gaviotin Zarcillo	X	Χ	0	0
Laridae	Sterna hirundo	Gaviotín Común	X		0	0
Laridae	Sterna hirundinacea	Gaviotín Sudamericano		Χ	0	0
Laridae	Thalasseus elegans	Gaviotín Elegante	X	Χ	0	0

	Especie	Nombre común	Periodo		Rango altitudinal	
Familia			Húmedo	Seco	Min	Max
Laridae	Thalasseus sandvicensis	Gaviotín de Pata Negra	X	Х	0	0
Laridae	Thalasseus maximus	Gaviotín Real	X	Х	0	0
Rhynchopidae	Rynchops niger	Rayador Negro	Х	Х	0	600
Columbidae	Columbina cruziana	Tortolita Peruana	X	Х	0	2900
Columbidae	Claravis pretiosa	Tortolita Azul	X		0	1200
Columbidae	Columba livia	Paloma Doméstica	Х	Х	0	4500
Columbidae	Zenaida meloda	Tórtola Melódica	X	Х	0	2500
Columbidae	Zenaida auriculata	Tortola Orejuda	X	Х	0	3400
Cuculidae	Crotophaga sulcirostris	Garrapatero de Pico Estriado	X	Х	0	2700
Tytonidae	Tyto alba	Lechuza de Campanario	X		0	4000
Strigidae	Glaucidium peruanum	Lechucita Peruana	X	Х	0	2400
Strigidae	Athene cunicularia	Lechuza Terrestre	X	Х	0	4000
Strigidae	Asio flammeus	Lechuza de Oreja Corta	X		0	4300
Caprimulgidae	Chordeiles acutipennis	Chotacabras Menor	X	Х	0	2500
Caprimulgidae	Caprimulgus longirostris	Chotacabras de Ala Bandeada	Х	Х	0	4000
Caprimulgidae	Caprimulgus anthonyi	Chotacabras de Matorral		Х	0	800
Trochilidae	Myrtis Fanny	Estrellita de Collar Púrpura	Х	Х	0	4000
Trochilidae	Rhodopis vesper	Colibrí de Oasis	X	Х	0	3350
Trochilidae	Myrmia micrura	Estrellita de Cola Corta	X		0	0
Trochilidae	Amazilia amazilia	Colibrí de Vientre Rufo	X	Х	0	2000
Alcedinidae	Megaceryle torquata	Martín Pescador Grande	X	Х	0	2000
Picidae	Veniliornis callonotus	Carpintero Dorsiescarlata	Х	Х	0	1200
Picidae	Colaptes rubiginosus	Carpintero Olividorado	X		0	2200
Falconidae	Caracara cheriway	Caracara Crestado	X	Х		
Falconidae	Falco sparverius	Cernícalo Americano	X	Χ	0	4500
Falconidae	Falco femoralis	Halcón Aplomado	X		0	4600
Falconidae	Falco peregrinus	Halcón Peregrino	X		0	4300
Psittacidae	Aratinga erythrogenys	Cotorra de Cabeza Roja	X		0	800
Psittacidae	Forpus coelestis	Periquito Esmeralda	X		0	1500
Thamnophilidae	Thamnophilus bernardi	Batará Acollarado	X		0	900
Melanopareiidae	Melanopareia elegans	Pecholuna Elegante	X	Х	0	1250

			Periodo		Rango altitudinal	
Familia	Especie	Nombre común	Húmedo	Seco	Min	Max
Furnariidae	Geositta peruviana	Minero Peruano	Х	Х	0	700
Furnariidae	Furnarius leucopus	Hornero Patipálida	Х	Х	0	2700
Furnariidae	Furnarius leucopus	Hornero Patipálida	Х	Х	0	800
Furnariidae	Synallaxis stictothorax	Colaespina Acollarada	Х	Х	0	400
Tyrannidae	Myiopagis subplacens	Elainia del Pacífico	Х		0	1750
Tyrannidae	Camptostoma obsoletum	Mosquerito Silbador	Х	Х	0	2500
Tyrannidae	Phaeomyias murina	Moscareta Murino	Х	Х	0	1750
Tyrannidae	Euscarthmus meloryphus	Tirano-Pigmeo de Corona Leonada	Х	Х	0	2100
Tyrannidae	Myiophobus fasciatus	Mosquerito de Pecho Rayado	Х	Х	0	2000
Tyrannidae	Pyrocephalus rubinus	Mosquero Bermellón (Turtupilín)	Х	Х	0	2600
Tyrannidae	Tumbezia salvini	Pitajo de Tumbes	Х		0	900
Tyrannidae	Muscigralla brevicauda	Dormilona de Cola Corta	Х	Х	0	1300
Tyrannidae	Tyrannus melancholicus	Tirano Tropical	Х	Х	0	1800
Corvidae	Cyanocorax mystacalis	Urraca Coliblanca	Х		0	1200
Hirundinidae	Pygochelidon cyanoleuca peruviana	Golondrina Azul y Blanca (Santa rosita)	X		0	3600
Hirundinidae	Progne chalybea	Martín Pechigris		Х	0	1700
Hirundinidae	Petrochelidon rufocollaris	Golondrina de Collar Castaño	Х		0	1300
Troglodytidae	Troglodytes aedon	Cucarachero Común	Х	Х	0	4600
Troglodytidae	Campylorhynchus fasciatus	Cucarachero Ondeado	Х	Х	0	2600
Troglodytidae	Canthorchilus superciliars	Cucarachero Cejón	Х	Х	0	1200
Polioptilidae	Polioptila plumbea bilineata	Perlita Tropical	Х	Х	500	700
Mimidae	Mimus longicaudatus	Calandria de Cola Larga (Chisco o Zoña)	Х	Х	0	2450
Motacillidae	Anthus lutescens	Cachirla Amarillenta	Х	Х	0	1300
Thraupidae	Thraupis episcopus	Tangara Azuleja (Violinista)	Х	Х	0	2600
Thraupidae	Conirostrum cinereum	Pico-de-Cono Cinereo, (Mielerito cineréo, Pico de cono cenizo)	Х	Х	0	4000
Thraupidae	Piezorhina cinérea	Frigilo Cinéreo	X	X	0	0
Thraupidae	Poospiza hispaniolensis	Monterita Acollarada	X	X	0	1500
Thraupidae	Sicalis flaveola	Chirigüe Azafranado	X	X	0	800

			Periodo		Rango altitudinal	
Familia	Especie	Nombre común		Seco	Min	Max
Thraupidae	Sicalis taczanowskii	Chirigüe Gargantiazufrada	Х	Х	0	0
		Semillerito Negro Azulado				
Thraupidae	Volatinia jacarina	(Saltapalito)	X	Χ	0	1100
Thraupidae	Sporophila peruviana	Espiguero Pico de Loro	Х	Χ	0	800
Thraupidae	Sporophila simplex	Espiguero Simple	X	Χ	0	1800
Thraupidae	Sporophila telasco	Espiguero de Garganta Castaña	X	Χ	0	1200
Thraupidae	Coereba flaveola	Mielero Común	X		0	1500
Thraupidae	Tiaris obscurus	Semillero Pardo	Χ		500	2000
Incertae sedis	Saltator striatipectus	Saltador Rayado	Х	Χ	0	1850
Emberizidae	Zonotrichia capensis	Gorrión de Collar Rufo (Pichisanka)	X	Χ	0	4000
Emberizidae	Rhynchospiza stolzmanni	Gorrión de Tumbes	Χ	Χ	0	1200
Parulidae	Parula pitiayumi	Parula Tropical	X	Χ	0	2600
Icteridae	Icterus graceannae	Bolsero Filiblanco	X	Χ	0	800
Icteridae	Dives warszewiczi	Tordo de Matorral	Χ	Χ	0	3000
Icteridae	Molothrus bonariensis	Tordo Brilloso (Tordo parásito)	X	Χ	0	2000
Icteridae	Sturnella bellicosa	Pecho Colorado Peruano X X		0	2500	
Passeridae	Passer domesticus	Gorrión Casero	Х	-	0	3000

Fuente: BISA, 2012

Orden Taxonómico según SACC 2012, Especies según Plenge 2012, Nombres en inglés: Según Plenge 2012, Schulenberg *et al.* 2010, Clements & Shany, 2001. Nombres español: Según Plenge 2012, Schulenberg *et al.* 2010, Clements & Shany, 2001.

B. Avifauna según el tipo de vegetación

Las aves en su mayoría se relacionan con un tipo en particular de ambiente y son muy pocas las que usan una amplia variedad de ambientes. La composición de especies varía en función de las unidades de vegetación, sitios de muestreo e incluso por la estacionalidad.

Durante el periodo de estudio se observó que la unidad de vegetación con mayor número de especies fue el Vegetación halófita de ribera de río con 123 especies, seguido por el Bosque seco con predominio de algarrobos con 82 especies, siendo los mismos ambientes los más ricos en especies en los periodos húmedo y seco.

b.1) Bosque seco con predominio de algarrobos

En esta unidad de vegetación un total de 82 especies fueron observadas, en su mayoría (81) en el periodo húmedo. En el periodo seco se observaron en este tipo de ambiente 61 especies. Predominaron en todo el periodo de evaluación los Passeriformes, especialmente de las familias Tyrannidae y Thraupida (cuadro 3.4.2.2-5). Los sitios de muestreo con esta unidad de vegetación que presentaron mayor número de especies fueron el SM15 y SM17. La avifauna de este lugar estuvo representada principalmente por *Piezorhina cinerea, Geositta peruviana y Mimus longicaudatus*.

Cuadro 3.4.2.2-5. Especies de aves de Bosque seco con predominio de algarrobos durante el 2012

Orden	Familia	Especie	Nombre común	Nombre inglés
Anseriformes	Anatidae	Anas bahamensis	Pato Gargantillo	White-cheeked Pintail
		Phalacrocorax		Guanay
Suliformes	Phalacrocoracidae	bougainvillii	Cormorán Guanay	Cormorant
Pelecaniformes	Ardeidae	Egretta thula	Garcita Blanca	Snowy Egret
			Gallinazo de	
Cathartiformes	Cathartidae	Cathartes aura	Cabeza Roja	Turkey Vulture
O 11 .11			Gallinazo de	D
Cathartiformes	Cathartidae	Coragyps atratus	Cabeza Negra	Black Vulture
Accipitriformes	Accipitridae	Circus cinereus	Aguilucho Cenizo	Cinereous Harrier
		Buteogallus	0 "/ 0 !	
Accipitriformes	Accipitridae	meridionalis	Gavilán Sabanero	Savanna Hawk
A :- :t-::f	A i i4i - i	Danah utaa uudalaatua	On diffe Mints	Harris's (Bay-
Accipitriformes	Accipitridae	Parabuteo unicinctus	Gavilán Mixto	winged) Hawk
A coinitriform co	A coinitrida o	Geranoaetus	Aguilugha Variabla	Variable Howk
Accipitriformes	Accipitridae	polyosoma Geranoaetus	Aguilucho Variable Aguilucho de	Variable Hawk Black-chested
Accipitriformes	Accipitridae	melanoleucus	Pecho Negro	Buzzard-Eagle
Accipititionnes	Accipitilidae	meianoleucus	r echo Neglo	Tawny-throated
Charadriiformes	Charadriidae	Oreopholus ruficollis	Chorlo de Campo	Dotterel
Onaradinionnes	Onaradinado	Отоортогао тапоотю	Alcaraván	Peruvian Thick-
Charadriiformes	Burhinidae	Burhinus superciliaris	Huerequeque	knee
		Thinocorus		
Charadriiformes	Thinocoridae	rumicivorus	Agachona Chica	Least Seedsnipe
		Chroicocephalus	Gaviota de	
Charadriiformes	Laridae	cirrocephalus	Capucha Gris	Gray-hooded Gull
				Croaking Ground-
Columbiformes	Columbidae	Columbina cruziana	Tortolita Peruana	Dove
Columbiformes	Columbidae	Claravis pretiosa	Tortolita Azul	Blue Ground-Dove
				West Peruvian
Columbiformes	Columbidae	Zenaida meloda	Tórtola Melódica	Dove
Columbiformes	Columbidae	Zenaida auriculata	Tortola Orejuda	Eared Dove
		Crotophaga	Garrapatero de	
Cuculiformes	Cuculidae	sulcirostris	Pico Estriado	Groove-billed Ani
			Lechuza de	
Strigiformes	Tytonidae	Tyto alba	Campanario	Barn Owl
				Peruvian Pygmy-
Strigiformes	Strigidae	Glaucidium peruanum	Lechucita Peruana	Owl
Strigiformes	Strigidae	Athene cunicularia	Lechuza Terrestre	Burrowing Owl
			Lechuza de Oreja	
Strigiformes	Strigidae	Asio flammeus	Corta	Short-eared Owl
0	0	Chordeiles	Chotacabras	L NP 14
Caprimulgiformes	Caprimulgidae	acutipennis	Menor	Lesser Nighthawk
Consingulations	Consimulation	Caprimulgus	Chotacabras de	Band-winged
Caprimulgiformes	Caprimulgidae	longirostris	Ala Bandeada	Nightjar
Caprimulaiformes	Caprimulaidas	Caprimulaus anthon:	Chotacabras de	Corub Nightier
Caprimulgiformes	Caprimulgidae	Caprimulgus anthonyi	Matorral Estrellita de Collar	Scrub Nightjar
Apodiformes	Trochilidae	Myrtis fanny	Púrpura	Purple-collared Woodstar
Apoulionnes	Trochilluae	ıvıyı us tatiliy	Fulpula	ขขอนอเสเ

Orden	Familia	Especie	Nombre común	Nombre inglés
				Oasis
Apodiformes	Trochilidae	Rhodopis vesper	Colibrí de Oasis	Hummingbird
			Estrellita de Cola	Short-tailed
Apodiformes	Trochilidae	Myrmia micrura	Corta	Woodstar
			Colibrí de Vientre	Amazilia
Apodiformes	Trochilidae	Amazilia amazilia	Rufo	Hummingbird
Diaifa was a s	Disides	Vanilia maia a alla matura		Scarlet-backed
Piciformes	Picidae	Veniliornis callonotus	Comintoro	Woodpecker
Piciformes	Picidae	Colontos rubiginosus	Carpintero Olividorado	Golden-olive
Ficilonnes	Piciuae	Colaptes rubiginosus	Caracara	Woodpecker
Falconiformes	Falconidae	Caracara cheriway	Crestado	Crested Caracara
1 alconilonnes	Talconidae	Caracara cheriway	Cernícalo	Crested Caracara
Falconiformes	Falconidae	Falco sparverius	Americano	American Kestrel
Falconiformes	Falconidae	Falco femoralis	Halcón Aplomado	Aplomado Falcon
Falconiformes	Falconidae	Falco peregrinus	Halcón Peregrino	Peregrine Falcon
1 alcorillorries	1 alcorlidae	T alco peregrirlus	Cotorra de	Red-masked
Psittaciformes	Psittacidae	Aratinga erythrogenys	Cabeza Roja	Parakeet
1 ontaonomics	1 ontaolaac	7 indunga cryun ogenya	Periquito	1 diakoot
Psittaciformes	Psittacidae	Forpus coelestis	Esmeralda	Pacific Parrotlet
- Ontaonormoo	- Ontaoidao	Thamnophilus	Zomoraida	T dome i direttet
Passeriformes	Thamnophilidae	bernardi	Batará Acollarado	Collared Antshrike
			Pecholuna	Elegant
Passeriformes	Melanopareiidae	Melanopareia elegans	Elegante	Crescentches
Passeriformes	Furnariidae	Geositta peruviana	Minero Peruano	Coastal Miner
		,		Pale-legged
Passeriformes	Furnariidae	Furnarius leucopus	Hornero Patipálida	Hornero
		•	Colaespina	Necklaced
Passeriformes	Furnariidae	Synallaxis stictothorax	Acollarada	Spinetail
			Elainia del	
Passeriformes	Tyrannidae	Myiopagis subplacens	Pacífico	Pacific Elaenia
				Southern
		Camptostoma	Mosquerito	Beardless-
Passeriformes	Tyrannidae	obsoletum	Silbador	Tyrannulet
D	T	Disconnection of the second of		Mouse-colored
Passeriformes	Tyrannidae	Phaeomyias murina Euscarthmus	Tinana Diamana da	Tyrannulet
Passeriformes	Tyrannidae	meloryphus	Tirano-Pigmeo de Corona Leonada	Tawny-crowned Pygmy-Tyrant
rassemonnes	i yranniuae	meioryprius	Mosquerito de	Bran-colored
Passeriformes	Tyrannidae	Myiophobus fasciatus	Pecho Rayado	Flycatcher
1 assemblines	Tyrannuae	Wylophobus lasciatus	Mosquero	i iyoatonei
			Bermellón	Vermilion
Passeriformes	Tyrannidae	Pyrocephalus rubinus	(Turtupilín)	Flycatcher
Passeriformes	Tyrannidae	Tumbezia salvini	Pitajo de Tumbes	Tumbes Tyrant
. 30001110111100	- jrannado	Muscigralla	Dormilona de Cola	Short-tailed Field-
Passeriformes	Tyrannidae	brevicauda	Corta	Tyrant
	j	Tyrannus		,
Passeriformes	Tyrannidae	melancholicus	Tirano Tropical	Tropical Kingbird
		Cyanocorax	,	
Passeriformes	Corvidae	mystacalis	Urraca Coliblanca	White-tailed Jay
		Pygochelidon	Golondrina Azul y	Blue-and-white
Passeriformes	Hirundinidae	cyanoleuca peruviana	Blanca (Santa	Swallow

Orden	Familia	Especie	Nombre común	Nombre inglés
			rosita)	
		Tachycineta		
Passeriformes	Hirundinidae	stolzmanni		
				Gray-breasted
Passeriformes	Hirundinidae	Progne chalybea		Martin
.,		Petrochelidon	Golondrina de	Chestnut-collared
Passeriformes	Hirundinidae	rufocollaris	Collar Castaño	Swallow
Dagagrifarma	Tropical	Tracile di itan andan	Cucarachero	Llavia a M/ran
Passeriformes	Troglodytidae	Troglodytes aedon Campylorhynchus	Común	House Wren
Passeriformes	Troglodytidae	fasciatus		Fasciated Wren
1 assemonnes	Troglodytidae	Canthorchilus	Cucarachero	Superciliated
Passeriformes	Troglodytidae	superciliars	Cejón	Wren
1 46661116111166	110glodyllado	Polioptila plumbea	Cojon	Tropical
Passeriformes	Polioptilidae	bilineata	Perlita Tropical	Gnatcatcher
	'		Calandria de Cola	
			Larga (Chisco o	Long-tailed
Passeriformes	Mimidae	Mimus longicaudatus	Zoña)	Mockingbird
			Tangara Azuleja	
Passeriformes	Thraupidae	Thraupis episcopus	(Violinista)	Blue-gray Tanager
			Pico-de-Cono	
			Cinereo, (Mielerito	
,			cineréo, Pico de	Cinereous
Passeriformes	Thraupidae	Conirostrum cinereum	cono cenizo)	Conebill
Passeriformes	Thraupidae	Piezorhina cinerea	Frigilo Cinéreo	Cinereous Finch
D	The second second	Poospiza	Monterita	Collared Warbling-
Passeriformes	Thraupidae	hispaniolensis	Acollarada	Finch
Passeriformes	Throupidoo	Sicalis flaveola	Chirigüe Azafranado	Saffron Finch
Passemonnes	Thraupidae	Sicalis liaveola	Chirigüe	Sulphur-throated
Passeriformes	Thraupidae	Sicalis taczanowskii	Gargantiazufrada	Finch
1 assemblines	Tillaupidac	Giodiio taozariowakii	Semillerito Negro	TITION
			Azulado	Blue-black
Passeriformes	Thraupidae	Volatinia jacarina	(Saltapalito)	Grassquit
	,	,	Espiguero Pico de	Parrot-billed
Passeriformes	Thraupidae	Sporophila peruviana	Loro	Seedeater
Passeriformes	Thraupidae	Sporophila simplex	Espiguero Simple	Drab Seedeater
			Espiguero de	Chestnut-throated
Passeriformes	Thraupidae	Sporophila telasco	Garganta Castaña	Seedeater
Passeriformes	Thraupidae	Coereba flaveola	Mielero Común	Bananaquit
				Dull-colored
Passeriformes	Thraupidae	Tiaris obscurus	Semillero Pardo	Grassquit
Passeriformes	Incertae sedis	Saltator striatipectus	Saltador Rayado	Streaked Saltator
			Gorrión de Collar	Rufous-collared
Passeriformes	Emberizidae	Zonotrichia capensis	Rufo (Pichisanka)	Sparrow
_ ,,		Rhynchospiza	Gorrión de	
Passeriformes	Emberizidae	stolzmanni	Tumbes	Tumbes Sparrow
Passeriformes	Parulidae	Parula pitiayumi	1	Tropical Parula
Danasir	lata dala	latamia amaza a a a a a	Dalaana Ellista	White-edged
Passeriformes	Icteridae	Icterus graceannae	Bolsero Filiblanco	Oriole
Passeriformes	Icteridae	Dives warszewiczi	Tordo de Matorral	Scrub Blackbird

Orden	Familia	Especie	Nombre común	Nombre inglés
			Tordo Brilloso	
Passeriformes	Icteridae	Molothrus bonariensis	(Tordo parásito)	Shiny Cowbird
			Pecho Colorado	Peruvian
Passeriformes	Icteridae	Sturnella bellicosa	Peruano	Meadowlark

Fuente: BISA, 2012

Orden Taxonómico según SACC 2012, Especies según Plenge 2012.

b.2) Bosque seco con predominio de sapote

En esta unidad de vegetación diez especies fueron registradas (cuadro 3.4.2.2-6), observadas en ambos periodos de evaluación. La avifauna de este tipo de ambiente fue muy escasa, observándose en él no más de una decena de individuos. Las aves que se mostraron más abundantes y frecuente en estos ambientes fueron *Geositta peruviana*, *Geranoaetus poliosoma* y *Coragyps atratus*.

Cuadro 3.4.2.2-6. Especies de aves de Bosque seco con predominia de sapote durante el 2012

Orden	Familia	Especie	Nombre común	Nombre ingles		
			Gallinazo de Cabeza			
Cathartiformes	Cathartidae	Cathartes aura	Roja	Turkey Vulture		
			Gallinazo de Cabeza			
Cathartiformes	Cathartidae	Coragyps atratus	Negra	Black Vulture		
		Geranoaetus				
Accipitriformes	Accipitridae	polyosoma	Aguilucho Variable	Variable Hawk		
				Tawny-throated		
Charadriiformes	Charadriidae	Oreopholus ruficollis	Chorlo de Campo	Dotterel		
			Estrellita de Collar	Purple-collared		
Apodiformes	Trochilidae	Myrtis fanny	Púrpura	Woodstar		
Apodiformes	Trochilidae	Rhodopis vesper	Colibrí de Oasis	Oasis Hummingbird		
Passeriformes	Furnariidae	Geositta peruviana	Minero Peruano	Coastal Miner		
		Synallaxis	Colaespina			
Passeriformes	Furnariidae	stictothorax	Acollarada	Necklaced Spinetail		
		Myiophobus	Mosquerito de Pecho	Bran-colored		
Passeriformes	Tyrannidae	fasciatus	Rayado	Flycatcher		
Passeriformes	Thraupidae	Piezorhina cinerea	Frigilo Cinéreo	Cinereous Finch		

Fuente: BISA, 2012

Orden Taxonómico según SACC 2012, Especies según Plenge 2012.

b.3) Vegetación halófita de playa marina

En esta unidad de vegetación se observaron 70 especies (cuadro 3.4.2.2-7). La avifauna de este lugar estuvo representada por congregaciones de cientos hasta

miles de *Phalacrocorax brasilianus*, *Phalacrocorax bouganvillii* y *Pelecanus thagus*.

Cuadro 3.4.2.2-7. Especies de aves de Vegetación halófita de playa marina durante el 2012

Orden	Familia	Especie	Nombre común	Nombre inglés
Orden	Ганна	Especie	Pingüino de	Humboldt
Sphenisciformes	Spheniscidae	Spheniscus humboldti	Humboldt	Penguin
Opricinisonomics	Ophomodiade	Oprioriioodo Hamboldti	Albatros de las	Waved
Procellariformes	Diomedeidae	Phoebastria irrorata	Galápagos	Albatross
T TOCCHAINCHTICS	Diemodelade	T Troopaotria irrorata	Carapagoo	Galapagos
		Pterodroma	Petrel de las	Petrel (Dark-
Procellariformes	Procellaridae	phaeopygia	Galápagos	rumped Petrel)
		7 7 7 0	Pardela de Pata	Pink-footed
Procellariformes	Procellaridae	Puffinus creatopus	Rosada	Shearwater
				Elliot's (White-
				vented) Storm- Petrel [White-
			Golondrina de Mar	vented (Elliot's)
Procellariformes	Hydrobatidae	Oceanites gracilis	Chica	Storm-Petrel]
1 Toochamornics	Trydrobatidae	o o o di mico gracimo	Golondrina de Mar	Wedge-rumped
Procellariformes	Hydrobatidae	Oceanodroma tethys	Peruana	Storm-Petrel
		Oceanodroma	Golondrina de Mar	Markham's
Procellariformes	Hydrobatidae	markhami	de Markham	Storm-Petrel
				Ringed
			Golondrina de Mar	(Hornby's)
Procellariformes	Hydrobatidae	Oceanodroma hornbyi	Acollarada	Storm-Petrel
			Golondrina de Mar	Black Storm-
Procellariformes	Hydrobatidae	Oceanodroma melania	Negra	Petrel
			Avefragata	Magnificent
Suliformes	Fregatidae	Fregata magnificens	Magnífica	Frigatebird
0 "		0 / / "	Piquero de Pata	Blue-footed
Suliformes	Sulidae	Sula nebouxii	Azul	Booby
0	O. distan	0.4	Diameter Democrate	Peruvian
Suliformes	Sulidae	Sula variegata	Piquero Peruano	Booby
Suliformes	Phalacrocoracidae	Phalacrocorax brasilianus	Cormorán	Neotropic Cormorant
Sullionnes	Filalaciocoracidae	Phalacrocorax	Neotropical	Guanay
Suliformes	Phalacrocoracidae	bougainvillii	Cormorán Guanay	Cormorant
Pelecaniformes	Pelecanidae	Pelecanus occidentalis	Pelícano Pardo	Brown Pelican
				Peruvian
Pelecaniformes	Pelecanidae	Pelecanus thagus	Pelícano peruano	Pelican
Pelecaniformes	Ardeidae	Bubulcus ibis	Garcita Bueyera	Cattle Egret
Pelecaniformes	Ardeidae	Ardea cocoi	Garza Cuca	Cocoi Heron
Pelecaniformes	Ardeidae	Ardea alba	Garza Grande	Great Egret
Pelecaniformes	Ardeidae	Egretta thula	Garcita Blanca	Snowy Egret
Pelecaniformes	Threskiornithidae	Eudocimus albus	Corocoro Blanco	White Ibis
			Ibis de la Puna	
Pelecaniformes	Threskiornithidae	Plegadis ridgwayi	(Yanavico)	Puna Ibis

Orden	Familia	Especie	Nombre común	Nombre inglés
Orden	i aiiiiia	Lspecie	Gallinazo de	iligies
Cathartiformes	Cathartidae	Cathartes aura	Cabeza Roja	Turkey Vulture
Cathartiformes	Cathartidae	Coragyps atratus	Gallinazo de Cabeza Negra	Black Vulture
Accipitriformes	Accipitridae	Geranoaetus polyosoma	Aguilucho Variable	Variable Hawk
Accipitriformes	Accipitridae	Geranoaetus melanoleucus	Aguilucho de Pecho Negro	Black-chested Buzzard-Eagle
Charadriiformes	Charadriidae	Charadrius semipalmatus	Chorlo semipalmado	Semipalmated Plover
Charadriiformes	Charadriidae	Charadrius wilsonia	Chorlo de Pico Grueso	Wilson's (Thick-billed) Plover [Wilson's Plover]
Charadriiformes	Charadriidae	Charadrius nivosus	Chorlo Nevado	Snowy Plover
Charadriiformes	Haematopodidae	Haematopus palliatus	Ostrero americano	American Oystercatcher
Charadriiformes	Burhinidae	Burhinus superciliaris	Alcaraván Huerequeque	Peruvian Thick-knee
Charadriiformes	Scolopacidae	Tringa flavipes	Playero Pata Amarilla Menor	Lesser Yellowlegs
Charadriiformes	Scolopacidae	Calidris canutus	Playero de Pecho Rufo	Red Knot
Charadriiformes	Scolopacidae	Calidris alba	Playero arenero	Sanderling
Charadriiformes	Scolopacidae	Calidris pusila	Playerito Semipalmado	Semipalmated Sandpiper
Charadriiformes	Scolopacidae	Calidris mauri	Playerito occidental	Western Sandpiper
Charadriiformes	Scolopacidae	Calidris minutilla	Playerito Menudo	Least Sandpiper
Charadriiformes	Scolopacidae	Calidris fuscicollis	Playerito de Lomo Blanco	White-rumped Sandpiper
Charadriiformes	Scolopacidae	Calidris bairdii	Playerito de Baird	Baird's Sandpiper
		Stercorarius		Pomarine
Charadriiformes	Stercorariidae	pomarinus	Salteador Pomarino	Jaeger
Charadriiformes	Laridae	Xema sabini	Gaviota de Sabine	Sabine's Gull
Charadriiformes	Laridae	Chroicocephalus cirrocephalus	Gaviota de Capucha Gris	Gray-hooded Gull
Charadriiformes	Laridae	Leucophaeus modestus	Gaviota gris	Gray Gull
Charadriiformes	Laridae	Leucophaeus pipixcan	Gaviota de Franklin	Franklin's Gull
				Belcher's (Band-tailed)
Charadriiformes	Laridae	Larus belcheri	Gaviota peruana	Gull
Charadriiformes	Laridae	Larus dominicanus	Gaviota dominicana	Kelp Gull
Charadriiformes	Laridae	Sternula lorata	Gaviotín Peruano	Peruvian Tern
Charadriiformes	Laridae	Larosterna inca	Gaviotin Zarcillo	Inca Tern
Charadriiformes	Laridae	Sterna hirundinacea	Gaviotín Sudamericano	South American Tern

Orden	Familia	Especie	Nombre común	Nombre inglés
Charadriiformes	Laridae	Thalasseus elegans	Gaviotín Elegante	Elegant Tern
		Thalasseus	Gaviotín de Pata	Sandwinch
Charadriiformes	Laridae	sandvicensis	Negra	Tern
Charadriiformes	Rhynchopidae	Rynchops niger	Rayador Negro	Black Skimmer
Columbiformes	Columbidae	Zenaida meloda	Tórtola Melódica	West Peruvian Dove
Columbiformes	Columbidae	Zenaida auriculata	Tortola Orejuda	Eared Dove
Strigiformes	Strigidae	Athene cunicularia	Lechuza Terrestre	Burrowing Owl
Falconiformes	Falconidae	Caracara cheriway	Caracara Crestado	Crested Caracara
Passeriformes	Furnariidae	Geositta peruviana	Minero Peruano	Coastal Miner
Passeriformes	Furnariidae	Synallaxis stictothorax	Colaespina Acollarada	Necklaced Spinetail
Passeriformes	Tyrannidae	Myiophobus fasciatus	Mosquerito de Pecho Rayado	Bran-colored Flycatcher
Passeriformes	Hirundinidae	Pygochelidon cyanoleuca peruviana	Golondrina Azul y Blanca (Santa rosita)	Blue-and-white Swallow
Passeriformes	Hirundinidae	Progne chalybea		Gray-breasted Martin
Passeriformes	Polioptilidae	Polioptila plumbea bilineata	Perlita Tropical	Tropical Gnatcatcher
Passeriformes	Mimidae	Mimus longicaudatus	Calandria de Cola Larga (Chisco o Zoña)	Long-tailed Mockingbird
D	Th	0'!'!'!-	Chirigüe	0 - "
Passeriformes	Thraupidae	Sicalis flaveola	Azafranado Chirigüe	Saffron Finch Sulphur-
Passeriformes	Thraupidae	Sicalis taczanowskii	Gargantiazufrada	throated Finch
Passeriformes	Thraupidae	Volatinia jacarina	Semillerito Negro Azulado (Saltapalito)	Blue-black Grassquit
Passeriformes	Thraupidae	Sporophila telasco	Espiguero de Garganta Castaña	Chestnut- throated Seedeater
Passeriformes	Thraupidae	Tiaris obscurus	Semillero Pardo	Dull-colored Grassquit
Passeriformes	Emberizidae	Zonotrichia capensis	Gorrión de Collar Rufo (Pichisanka)	Rufous- collared Sparrow

Fuente: BISA, 2012 Orden Taxonómico según SACC 2012, Especies según Plenge 2012.

b.4) Vegetación halófita de ribera de río

En los espejos de agua del Estuario de Virrilá y en extremo SE de La Niña se observó el mayor número de especies de la zona de estudio. Fueron 123 las especies de aves asociadas a estos ambientes observadas durante todo el periodo de estudio, 115 durante el periodo húmedo y 93 durante el periodo seco (cuadro 3.4.2.2-8).

Los sitios de muestreo con esta unidad de vegetación que presentaron un mayor número de especies fueron los del Estuario de Virrilá, en especial el SM08 y SM04 con 70 y 75 especies respectivamente. Las especies con poblaciones mas abundantes que van desde cientos a miles de individuos fueron *Phalacrocorax brasilianus*, *Pelecanus thagus* y *Larus dominicanus*.

En estos ambientes destacó la presencia de flamencos *Phoenicopterus chilensis* tanrto en el Estuario de Virrilá, como en La Niña.

Cuadro 3.4.2.2-8. Especies de aves de Vegetación halófita de ribera de río durante el 2012.

Orden	Familia	Especie	Nombre común	Nombre inglés
Anseriformes	Anatidae	Anas bahamensis	Pato Gargantillo	White-cheeked Pintail
Anseriformes	Anatidae	Anas discors	Pato de Ala Azul	Blue-winged Teal
Anseriformes	Anatidae	Anas cyanoptera	Pato Colorado	Cinnamon Teal
Podicipediformes	Podicipedidae	Rollandia rolland	Zambullidor Pimpollo	White-tufted Grebe
Podicipediformes	Podicipedidae	Tachybaptus dominicus	Zambullidor Menor	Least Grebe
Podicipediformes	Podicipedidae	Podilymbus podiceps	Zambullidor de Pico Grueso	Pied-billed Grebe
Podicipediformes	Podicipedidae	Podiceps major	Zambullidor Grande	Great Grebe
Phoenicopteriform es	Phoenicopteridae	Phoenicopterus chilensis	Flamenco Chileno	Chilean Flamingo
Procellariformes	Diomedeidae	Phoebastria irrorata	Albatros de las Galápagos	Waved Albatross
Procellariformes	Procellaridae	Pterodroma phaeopygia	Petrel de las Galápagos	Galapagos Petrel (Dark-rumped Petrel)
Procellariformes	Procellaridae	Procellaria aequinoctialis	Petrel de Mentón Blanco	White-chinned Petrel
Procellariformes	Procellaridae	Puffinus bulleri	Pardela de Buller	Buller's Shearwater
Procellariformes	Procellaridae	Puffinus griseus	Pardela Oscura	Sooty Shearwater
Procellariformes	Procellaridae	Puffinus creatopus	Pardela de Pata	Pink-footed

Orden	Familia	Especie	Nombre común	Nombre inglés
			Rosada	Shearwater
Procellariformes	Hydrobatidae	Oceanites gracilis	Golondrina de Mar Chica	Elliot's (White-vented) Storm-Petrel [White- vented (Elliot's) Storm-Petrel]
	.,,	Oceanodroma	Golondrina de	Wedge-rumped
Procellariformes	Hydrobatidae	tethys	Mar Peruana	Storm-Petrel
Dro colloriformo co		Oceanodroma markhami	Golondrina de	Markham's Storm-
Procellariformes	Hydrobatidae	Oceanodroma	Mar de Markham Golondrina de	Petrel Ringed (Hornby's)
Procellariformes	Hydrobatidae	hornbyi	Mar Acollarada	Storm-Petrel
Suliformes	Fregatidae	Fregata magnificens	Avefragata Magnífica	Magnificent Frigatebird
			Piquero de Pata	
Suliformes	Sulidae	Sula nebouxii	Azul	Blue-footed Booby
Suliformes	Sulidae	Sula variegata	Piquero Peruano	Peruvian Booby
Outlife was a	Dhalassa	Phalacrocorax	Cormorán	Na atrania Occione
Suliformes	Phalacrocoracidae	brasilianus	Neotropical	Neotropic Cormorant
Suliformes	Phalacrocoracidae	Phalacrocorax	Cormorán	Cuanay Cormorant
Sullornies	Prialacrocoracidae	bougainvillii Pelecanus	Guanay	Guanay Cormorant
Pelecaniformes	Pelecanidae	occidentalis	Pelícano Pardo	Brown Pelican
Pelecaniformes	Pelecanidae	Pelecanus thagus	Pelícano peruano	Peruvian Pelican
		Nycticorax		Black-crowned Night-
Pelecaniformes	Ardeidae	nycticorax	Huaco Común	Heron
Pelecaniformes	Ardeidae	Bubulcus ibis	Garcita Bueyera	Cattle Egret
Pelecaniformes	Ardeidae	Ardea cocoi	Garza Cuca	Cocoi Heron
Pelecaniformes	Ardeidae	Ardea alba	Garza Grande	Great Egret
Pelecaniformes	Ardeidae	Egretta thula	Garcita Blanca	Snowy Egret
Pelecaniformes	Ardeidae	Egretta caerulea	Garcita Azul	Little Blue Heron
Pelecaniformes	Threskiornithidae	Plegadis ridgwayi	Ibis de la Puna (Yanavico)	Puna Ibis
Pelecaniformes	Threskiornithidae	Platalea ajaja	Espátula rosada	Roseate Spoonbill
Cathartiformes	Cathartidae	Cathartes aura	Gallinazo de Cabeza Roja	Turkey Vulture
Cathartiformes	Cathartidae	Coragyps atratus	Gallinazo de Cabeza Negra	Black Vulture
Accipitriformes	Pandionidae	Pandion haliaetus	Águila pescadora	Osprey
Accipitriformes	Accipitridae	Circus cinereus	Aguilucho Cenizo	Cinereous Harrier
		Buteogallus	Gavilán	
Accipitriformes	Accipitridae	meridionalis	Sabanero	Savanna Hawk
Accipitriformes	Accipitridae	Parabuteo unicinctus	Gavilán Mixto	Harris's (Bay-winged) Hawk
Accibitiioiiiies	Accipitituae	Geranoaetus	Aguilucho	TIAWK
Accipitriformes	Accipitridae	polyosoma	Variable	Variable Hawk
Gruiformes	Rallidae	Pardirallus sanguinolentus	Rascón Plomizo	Plumbeous Rail
Cruitores	Dollidos	Collinula galacta	Polla de Agua	Common Callinula
Gruiformes	Rallidae	Gallinula galeata	Común	Common Gallinule Slate-colored
Gruiformes	Rallidae	Fulica ardesiaca	Gallareta Andina	(Andean) Coot

Orden	Familia	Especie	Nombre común	Nombre inglés
		•	Chorlo Dorado	American Golden-
Charadriiformes	Charadriidae	Pluvialis dominica	Americano	Plover
Charadriiformes	Charadriidae	Pluvialis squatarola	Chorlo gris	Black-bellied Plover
				Wilson's (Thick-billed)
			Chorlo de Pico	Plover [Wilson's
Charadriiformes	Charadriidae	Charadrius wilsonia	Grueso	Plover]
Charadriiformes	Charadriidae	Charadrius vociferus	Chorlo Gritón	Killdeer
Charadriiformes	Charadriidae	Charadrius nivosus	Chorlo Nevado	Snowy Plover
			Chorlo	
Charadriiformes	Charadriidae	Charadrius collaris	Acollarado	Collared Plover
01 1 ""		Haematopus	Ostrero	American
Charadriiformes	Haematopodidae	palliatus	americano	Oystercatcher
Ob a na aluiifa ma a a	Daarum daa atalala a	Himantopus	Cigüeñuela de	Dia ale sa alea al Otilt
Charadriiformes	Recurvirostridae	mexicanus	Cuello Negro	Black-necked Stilt
Charadriifarmaa	Durbinidos	Burhinus superciliaris	Alcaraván	Dorwing Thick know
Charadriiformes	Burhinidae	Limnodromus	Huerequeque	Peruvian Thick-knee
Charadriiformes	Scolopacidae	griseus	Agujeta de Pico Corto	Short-billed Dowitcher
Charadriiformes	Scolopacidae	Limosa haemastica	Aguja de Mar	Hudsonian Godwit
Charadriiformes	•			Whimbrel
	Scolopacidae	Numenius phaeopus	Zarapito Trinador	
Charadriiformes	Scolopacidae	Actitis macularius	Playero Coleador	Spotted Sandpiper
Charadriiformes	Coolonasidas	Tringo molonolougo	Playero Pata	Creator Valloulage
Charaumionnes	Scolopacidae	Tringa melanoleuca	Amarilla Mayor Playero Pata	Greater Yellowlegs
Charadriiformes	Scolopacidae	Tringa flavipes	Amarilla Menor	Lesser Yellowlegs
Charadriiformes	Scolopacidae	Tringa navipes Tringa solitaria	Playero Solitario	Solitary Sandpiper
Charaumonnes	Scolopacidae	Tririya Suitaria	Playero de Ala	Sultary Sanupiper
Charadriiformes	Scolopacidae	Tringa semipalmata	Blanca	Willet
Onaradimonnes	Coolopaolaac	Tringa somipaimata	Playero de Pecho	VVIIICE
Charadriiformes	Scolopacidae	Calidris canutus	Rufo	Red Knot
Charadriiformes	Scolopacidae	Calidris alba	Playero arenero	Sanderling
0.10.00	- Coolopuoluus	- Canano anda	Playerito	Semipalmated
Charadriiformes	Scolopacidae	Calidris pusila	Semipalmado	Sandpiper
	•	,	Playerito	
Charadriiformes	Scolopacidae	Calidris mauri	occidental	Western Sandpiper
Charadriiformes	Scolopacidae	Calidris minutilla	Playerito Menudo	Least Sandpiper
			Playerito de	White-rumped
Charadriiformes	Scolopacidae	Calidris fuscicollis	Lomo Blanco	Sandpiper
Charadriiformes	Scolopacidae	Calidris bairdii	Playerito de Baird	Baird's Sandpiper
Charadriiformes	Scolopacidae	Phalaropus tricolor	Faláropo Tricolor	Wilson's Phalarope
			Faláropo de Pico	Red-necked
Charadriiformes	Scolopacidae	Phalaropus lobatus	Fino	Phalarope
		Chroicocephalus	Gaviota de	
Charadriiformes	Laridae	cirrocephalus	Capucha Gris	Gray-hooded Gull
O	l	Leucophaeus		
Charadriiformes	Laridae	modestus	Gaviota gris	Gray Gull
Ol and Lair	1 - 2 1	Leucophaeus	0 14 5 14	1
Charadriiformes	Laridae	atricilla	Gaviota Reidora	Laughing Gull
		Leucophaeus	Gaviota de	Franklinia Cull
Charadrift				
Charadriiformes	Laridae	pipixcan	Franklin	Franklin's Gull Belcher's (Band-

Orden	Familia	Especie	Nombre común	Nombre inglés
			Gaviota	
Charadriiformes	Laridae	Larus dominicanus	dominicana	Kelp Gull
Charadriiformes	Laridae	Sternula lorata	Gaviotín Peruano	Peruvian Tern
		Gelochelidon	Gaviotín de Pico	
Charadriiformes	Laridae	nilotica	Negro	Gull-billed Tern
Charadriiformes	Laridae	Larosterna inca	Gaviotin Zarcillo	Inca Tern
Charadriiformes	Laridae	Sterna hirundo	Gaviotín Común	Common Tern
			Gaviotín	
Charadriiformes	Laridae	Sterna hirundinacea	Sudamericano	South American Tern
Charadriifarmas	Loridoo	Thalassaus alagans	Gaviotín	Flogant Torn
Charadriiformes	Laridae	Thalasseus elegans Thalasseus	Elegante Gaviotín de Pata	Elegant Tern
Charadriiformes	Laridae	sandvicensis	Negra	Sandwinch Tern
<u> </u>	Landao	Thalasseus	riogia	Canawinen Ten
Charadriiformes	Laridae	maximus	Gaviotín Real	Royal Tern
Charadriiformes	Rhynchopidae	Rynchops niger	Rayador Negro	Black Skimmer
	' '	, ,	Paloma	Rock Pigeon (Rock
Columbiformes	Columbidae	Columba livia	Doméstica	Dove)
Columbiformes	Columbidae	Zenaida meloda	Tórtola Melódica	West Peruvian Dove
Columbiformes	Columbidae	Zenaida auriculata	Tortola Orejuda	Eared Dove
		Crotophaga	Garrapatero de	
Cuculiformes	Cuculidae	sulcirostris	Pico Estriado	Groove-billed Ani
			Lechuza	
Strigiformes	Strigidae	Athene cunicularia	Terrestre	Burrowing Owl
0	0	A - ' - CI	Lechuza de Oreja	
Strigiformes	Strigidae	Asio flammeus Chordeiles	Chatacahras	Short-eared Owl
Caprimulgiformes	Caprimulgidae	acutipennis	Chotacabras Menor	Lesser Nighthawk
Capilliugilonnes	Caprimulgidae	acuupenins	Colibrí de Vientre	Amazilia
Apodiformes	Trochilidae	Amazilia amazilia	Rufo	Hummingbird
7.100		/ maama amaama	Martín Pescador	
Coraciiformes	Alcedinidae	Megaceryle torquata	Grande	Ringed Kingfisher
			Caracara	
Falconiformes	Falconidae	Caracara cheriway	Crestado	Crested Caracara
Falconiformes	Falconidae	Falco peregrinus	Halcón Peregrino	Peregrine Falcon
		Aratinga	Cotorra de	Red-masked
Psittaciformes	Psittacidae	erythrogenys	Cabeza Roja	Parakeet
Passeriformes	Furnariidae	Geositta peruviana	Minero Peruano	Coastal Miner
,		Synallaxis	Colaespina	
Passeriformes	Furnariidae	stictothorax	Acollarada	Necklaced Spinetail
Daggarifarmas	Turannidae	Myiophobus	Mosquerito de	Bran-colored
Passeriformes	Tyrannidae	fasciatus	Pecho Rayado Mosquero	Flycatcher
		Pyrocephalus	Bermellón	
Passeriformes	Tyrannidae	rubinus	(Turtupilín)	Vermilion Flycatcher
1 40001110111100	Tyrannaac	Muscigralla	Dormilona de	Short-tailed Field-
Passeriformes	Tyrannidae	brevicauda	Cola Corta	Tyrant
		Cyanocorax	Urraca	
Passeriformes	Corvidae	mystacalis	Coliblanca	White-tailed Jay
		Tachycineta		
Passeriformes	Hirundinidae	stolzmanni		
Passeriformes	Hirundinidae	Progne chalybea		Gray-breasted Martin

Orden	Familia	Especie	Nombre común	Nombre inglés
		•	Cucarachero	
Passeriformes	Troglodytidae	Troglodytes aedon	Común	House Wren
		Campylorhynchus		
Passeriformes	Troglodytidae	fasciatus		Fasciated Wren
		Canthorchilus	Cucarachero	
Passeriformes	Troglodytidae	superciliars	Cejón	Superciliated Wren
		Polioptila plumbea		
Passeriformes	Polioptilidae	bilineata	Perlita Tropical	Tropical Gnatcatcher
			Calandria de	
		Mimus	Cola Larga	Long-tailed
Passeriformes	Mimidae	Iongicaudatus	(Chisco o Zoña)	Mockingbird
			Cachirla	
Passeriformes	Motacillidae	Anthus lutescens	Amarillenta	Yellowish Pipit
			Pico-de-Cono	
			Cinereo,	
			(Mielerito	
		Conirostrum	cineréo, Pico de	0
Passeriformes	Thraupidae	cinereum	cono cenizo)	Cinereous Conebill
Passeriformes	Thraupidae	Piezorhina cinerea	Frigilo Cinéreo	Cinereous Finch
		Poospiza	Monterita	Collared Warbling-
Passeriformes	Thraupidae	hispaniolensis	Acollarada	Finch
			Chirigüe	
Passeriformes	Thraupidae	Sicalis flaveola	Azafranado	Saffron Finch
,		0	Chirigüe	Sulphur-throated
Passeriformes	Thraupidae	Sicalis taczanowskii	Gargantiazufrada	Finch
			Semillerito Negro	
Dif	Thursty	Malatinia is sovies	Azulado	Diversity Consequent
Passeriformes	Thraupidae	Volatinia jacarina	(Saltapalito)	Blue-black Grassquit
Passeriformes	Thraupidae	Sporophila simplex	Espiguero Simple	Drab Seedeater
			Espiguero de	Objects to the sector I
D	Theresis	Sparaphila talana	Garganta	Chestnut-throated
Passeriformes	Thraupidae	Sporophila telasco	Castaña	Seedeater
Passeriformes	Thraupidae	Tiaris obscurus	Semillero Pardo	Dull-colored Grassquit
D	F. C. C. C.	7 (Gorrión de Collar	Rufous-collared
Passeriformes	Emberizidae	Zonotrichia capensis	Rufo (Pichisanka)	Sparrow
Passeriformes	Parulidae	Parula pitiayumi	1	Tropical Parula
		Molothrus	Tordo Brilloso	
Passeriformes	Icteridae	bonariensis	(Tordo parásito)	Shiny Cowbird
,			Pecho Colorado	
Passeriformes	Icteridae	Sturnella bellicosa	Peruano	Peruvian Meadowlark

Fuente: BISA, 2012 Orden Taxonómico según SACC 2012, Especies según Plenge 2012

b.5) Acantilados cerca a Puerto Petro Perú

En esta ambiente se observaron sólo 22 especies durante el periodo de estudio (cuadro 3.4.2.2-9), 20 durante el periodo húmedo y 21 durante el periodo seco. Si bien en este tipo de ambiente el número de especies fue reducido, las poblaciones de algunas especies fueron de miles o cientos de individuos. Las especies con poblaciones más abundantes fueron *Sula nebouxi*, *Sula variegata* y *Phalacrocorax bougainvillii*.

Cuadro 3.4.2.2-9. Especies de aves de los acantilados cerca a Puerto Petro Perú durante el 2012

Orden	Familia	Especie	Nombre común	Nombre inglés
				Magnificent
Suliformes	Fregatidae	Fregata magnificens	Avefragata Magnífica	Frigatebird
Suliformes	Sulidae	Sula nebouxii	Piquero de Pata Azul	Blue-footed Booby
Suliformes	Sulidae	Sula variegata	Piquero Peruano	Peruvian Booby
		Phalacrocorax		Neotropic
Suliformes	Phalacrocoracidae	brasilianus	Cormorán Neotropical	Cormorant
		Phalacrocorax		
Suliformes	Phalacrocoracidae	,	Cormorán Guanay	Guanay Cormorant
Pelecaniformes	Pelecanidae	Pelecanus thagus	Pelícano peruano	Peruvian Pelican
Pelecaniformes	Ardeidae	Egretta thula	Garcita Blanca	Snowy Egret
			Gallinazo de Cabeza	
Cathartiformes	Cathartidae	Cathartes aura	Roja	Turkey Vulture
			Gallinazo de Cabeza	
Cathartiformes	Cathartidae	Coragyps atratus	Negra	Black Vulture
Charadriiformes	Charadriidae	Charadrius collaris	Chorlo Acollarado	Collared Plover
				Blackish
Charadriiformes	Haematopodidae	Haematopus ater	Ostrero negruzco	Oystercatcher
	5	Himantopus	Cigüeñuela de Cuello	
Charadriiformes	Recurvirostridae	mexicanus	Negro	Black-necked Stilt
Ob a	l autola a	Chroicocephalus	Gaviota de Capucha	0
Charadriiformes	Laridae	cirrocephalus	Gris	Gray-hooded Gull
Charadriiformes	Laridao	Leucophaeus modestus	Gaviota gris	Gray Gull
Charadillollies	Lanuae	modestas	Gaviota gris	Belcher's (Band-
Charadriiformes	I aridae	Larus belcheri	Gaviota peruana	tailed) Gull
Charadriiformes		Larus dominicanus	Gaviota dominicana	Kelp Gull
Charadriiformes		Larosterna inca	Gaviota dominicana Gaviotin Zarcillo	Inca Tern
Charadhilonnes	Lanuae	Laiosterria irica	Gaviotin Zarcillo	Rock Pigeon (Rock
Columbiformes	Columbidae	Columba livia	Paloma Doméstica	Dove)
Columbilotifics	Oolambidac	Oolalliba livia	Estrellita de Collar	Purple-collared
Apodiformes	Trochilidae	Myrtis fanny	Púrpura	Woodstar
Passeriformes	Thraupidae	Piezorhina cinerea	Frigilo Cinéreo	Cinereous Finch
Passeriformes	Thraupidae	Sicalis flaveola	Chirigüe Azafranado	Saffron Finch
Passeriformes	Passeridae	Passer domesticus	Gorrión Casero	House Sparrow
1 03361110111163	1 033511005	า นองษา นบทาษงแบนง	Comon Casero	Triouse opariow

Fuente: BISA, 2012 Orden Taxonómico según SACC 2012, Especies según Plenge 2012

b.6) Puerto (Puerto Rico)

En este ambiente con orillas rocos, alguna seccciones arenosas y elementos típicos de un mueble para pesca se observaron 23 especies, 22 durante el periodo húmedo (cuadro 3.4.2.2-10) y 21 durante el periodo seco. Algunas especies presentaron poblacines abundantes de hasta miles de individuos como *Sula variegata*, *Phalacrocorax bouganvillii* y *Larus dominicanus*.

Cuadro 3.4.2.2.10. Especies de aves de pajonal durante el periodo Húmedo de 2012

Orden	Familia	Especie	Nombre común	Nombre inglés
		Oceanodroma	Golondrina de	Markham's Storm-
Procellariformes	Hydrobatidae	markhami	Mar de Markham	Petrel
			Piquero de Pata	
Suliformes	Sulidae	Sula nebouxii	Azul	Blue-footed Booby
Suliformes	Sulidae	Sula variegata	Piquero Peruano	Peruvian Booby
		Phalacrocorax	Cormorán	Neotropic
Suliformes	Phalacrocoracidae	brasilianus	Neotropical	Cormorant
		Phalacrocorax	Cormorán	
Suliformes	Phalacrocoracidae	bougainvillii	Guanay	Guanay Cormorant
Pelecaniformes	Pelecanidae	Pelecanus occidentalis	Pelícano Pardo	Brown Pelican
Pelecaniformes	Pelecanidae	Pelecanus thagus	Pelícano peruano	Peruvian Pelican
			Gallinazo de	
Cathartiformes	Cathartidae	Cathartes aura	Cabeza Roja	Turkey Vulture
			Gallinazo de	
Cathartiformes	Cathartidae	Coragyps atratus	Cabeza Negra	Black Vulture
				Blackish
Charadriiformes	Haematopodidae	Haematopus ater	Ostrero negruzco	Oystercatcher
		Chroicocephalus	Gaviota de	
Charadriiformes	Laridae	cirrocephalus	Capucha Gris	Gray-hooded Gull
		Leucophaeus		
Charadriiformes	Laridae	modestus	Gaviota gris	Gray Gull
				Belcher's (Band-
Charadriiformes	Laridae	Larus belcheri	Gaviota peruana	tailed) Gull
			Gaviota	
Charadriiformes	Laridae	Larus dominicanus	dominicana	Kelp Gull
			Paloma	Rock Pigeon (Rock
Columbiformes	Columbidae	Columba livia	Doméstica	Dove)
				West Peruvian
Columbiformes	Columbidae	Zenaida meloda	Tórtola Melódica	Dove
Passeriformes	Furnariidae	Geositta peruviana	Minero Peruano	Coastal Miner
			Mosquero	[]
		_ , , , ,	Bermellón	Vermilion
Passeriformes	Tyrannidae	Pyrocephalus rubinus	(Turtupilín)	Flycatcher
		_ , , , ,	Cucarachero	\
Passeriformes	Troglodytidae	Troglodytes aedon	Común	House Wren
		Campylorhynchus		
Passeriformes	Troglodytidae	fasciatus		Fasciated Wren

Orden	Familia	Especie	Nombre común	Nombre inglés
			Calandria de Cola	
			Larga (Chisco o	Long-tailed
Passeriformes	Mimidae	Mimus longicaudatus	Zoña)	Mockingbird
Passeriformes	Thraupidae	Piezorhina cinerea	Frigilo Cinéreo	Cinereous Finch
Passeriformes	Passeridae	Passer domesticus	Gorrión Casero	House Sparrow

Fuente: BISA, 2012

Orden Taxonómico según SACC 2012, Especies según Plenge 2012

Las aves del área de estudio se mostraron especialmente abundantes en la vegetación halófita de ribera de río, seguidos del ambiente de vegetación halófita de playa marina y el Acantilado en el sector del Puerto de Petro Perú.

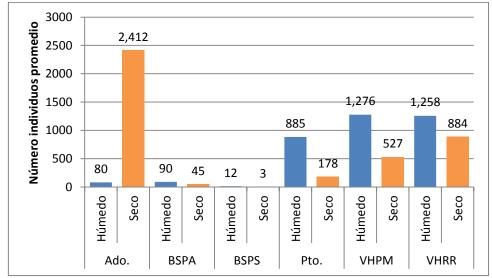
Entre los sitios de muestreo evaluados la mayor riqueza de especies se observó en el tres Sitios de muestreo del Estuario de Virrilá SM04, SM08 y SM02. El otro sitio de mayor riqueza de especies fue el SM13b en el sector La Niña (cuadro 3.4.2.2-11 y **Anexo 3-8**).

En relación a la abundancia de individuos, tres sitios de muestreo destacaron, el SM08 y el SM02 del Estuario de Virrilá y el SM21 que comprende el sector de acantilados del Puerto de Petro Perú (Cuadro 3.4.2.2-11 y **Anexo 3-8**).

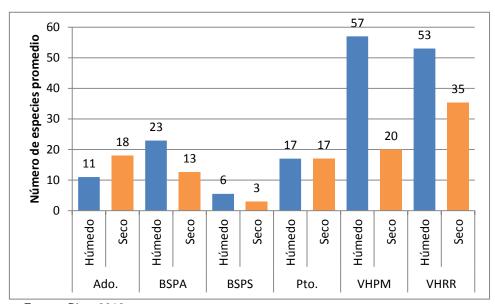
La información obtenida con el conteo total también mostro al Estuario de Virrilá como un ambiente de gran importancia por la riqueza de especies y por mantener importantes poblaciones de aves acuáticas congregatorias (**Anexo 3-8**).

C. Abundancia y diversidad de la avifauna

Durante la presente evaluación se encontró que la mayor abundancia de aves (número promedio de aves por sitio de muestreo) se registra en la unidad de Acantilados o Ado en el periodo Seco de evaluación (2412 aves/sitio), seguida de Vegetación halófita de riberas de ríos o VHRR durante el periodo Húmedo (1258) y Vegetación halófita de playa marina o VHPM del mismo periodo (900) (figura. 3.4.2.2-1, cuadros 3.4.2.2-11 y 3.4.2.2-12). Los valores de abundancia por sitio de muestreo variaron desde 3 individuos en el SM13a (Bosque seco con predominio de sapotes) hasta 2412 en el sitio SM21 (Acantilado), en ambos casos durante el periodo seco (cuadros 3.4.2.2-11 y cuadro 3.4.2.2-12).


El número de especies (riqueza) presentó una menor variación entre las unidades de vegetación, siendo mayor en promedio en los dos tipos de Vegetación halófita en el periodo húmedo (53 y 44 especies respectivamente) (figura. 3.4.2.2-1, cuadros 3.4.2.2-11 y cuadro 3.4.2.2-12). Los valores de riqueza variaron entre los sitios de muestreo desde 3 especies en el sitio SM13a en ambos periodos (bosque seco con predominio de sapote), hasta 75 especies en el sitio SM04 en el periodo seco, correspondiente a una Vegetación halófita de riberas de ríos (cuadro 3.4.2.2-11 y cuadro 3.4.2.2-12).

Los mayores valores de diversidad se encontraron en el bosque seco con predominio de algarrobo en el periodo húmedo (H'= 3,80 bits/ind.), seguido de cerca por la Vegetación halófita de riberas de ríos en el periodo seco (H'= 3,50 bits/ind.) (Fig. 3.4.2.2-1, cuadro 3.4.2.2-11 y cuadro 3.4.2.2-12). Los valores promedio de abundancia, riqueza y diversidad de especies son más bajos en el Bosque seco con predominio de sapotes (Figura. 3.4.2.2-1, cuadro 3.4.2.2-11 y cuadro 3.4.2.2-12).


Considerando el total de registros se observa los valores mayores de abundancia y riqueza de especies en la Vegetación halófita de riberas de ríos (en especial en

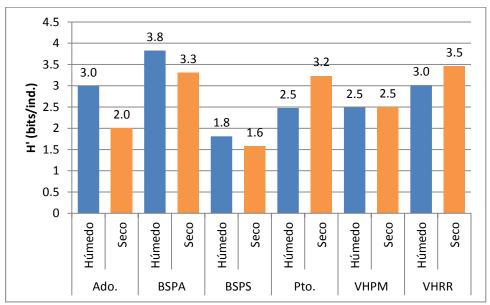

el estuario Virrilá) (Figura. 3.4.2.2-2), aunque se debe considerar en este caso que el diferente número de sitios de muestreo afecta los valores totales.

Figura 3.4.2.2-1. Abundancia, Riqueza y Diversidad (H') de especies promedio de la avifauna en las diferentes unidades de vegetación del área

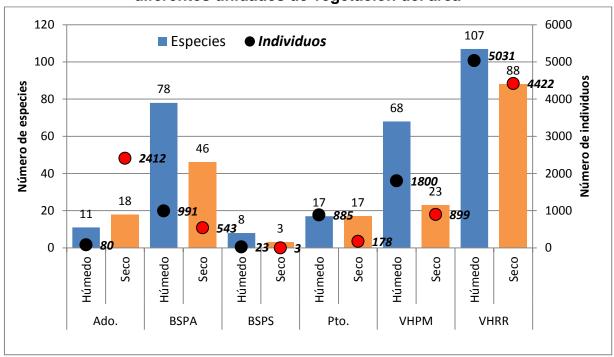
Fuente: Bisa, 2012

Cuadro 3.4.2.2-11. Características de abundancia, riqueza, diversidad y equitabilidad de las avifaunas de las unidades de vegetación evaluadas durante ambos periodos.

Unidad	Sitio	Especies	Individuos	Shannon- Wiener (H')	Simpson (1-D)	Equitabilidad
Periodo Húmedo						
Acantilado	SM21	11.00	80.00	2.9950	0.8516	0.8657
	Promedio	11.00	80.00	2.9950	0.8516	0.8657
	SM05	31.00	156.00	4.3281	0.9293	0.8737
	SM09	16.00	87.00	3.4827	0.8899	0.8705
	SM10	10.00	145.00	2.7714	0.7990	0.8345
Bosque seco con	SM11	8.00	34.00	2.6142	0.8114	0.8714
predominio de algarrobos	SM12	12.00	20.00	3.0224	0.8050	0.8429
a.ga.rezee	SM14	19.00	49.00	3.9068	0.9196	0.9197
	SM15	31.00	36.00	4.8922	0.9645	0.9875
	SM17	36.00	97.00	4.5185	0.9270	0.8741
	SM18	31.00	161.00	4.1795	0.9257	0.8437

Unidad	Sitio	Especies	Individuos	Shannon- Wiener (H')	Simpson (1-D)	Equitabilidad
Periodo Húmedo						
	SM19	27.00	61.00	4.1333	0.9175	0.8694
	Promedio	22.1	84.6	3.78491	0.88889	0.87874
Bosque seco con	SM06	8.00	16.00	2.4742	0.7500	0.8249
predominio de	SM13a	3.00	7.00	1.1488	0.4490	0.7248
sapotes	Promedio	5.50	11.50	1.8115	0.5995	0.7749
Puerto	SM22	17.00	885.00	2.4757	0.7636	0.6055
i deito	Promedio	17.00	885.00	2.4757	0.7636	0.6055
Vegetación halófita	SM01	57.00	1276.00	2.4901	0.6094	0.4268
de playas marina	Promedio	57.00	1276.00	2.4901	0.6094	0.4268
Vegetación halófita de riberas de ríos	SM02	49.00	1590.00	2.5767	0.7124	0.4590
	SM04	59.00	1284.00	3.6082	0.8524	0.6133
	SM08	63.00	1201.00	3.0470	0.8079	0.5097
	SM13b	41.00	956.00	2.8176	0.7782	0.5259
	Promedio	53.00	1257.75	3.0123	0.7877	0.5270

Fuente: BISA, 2012


Cuadro 3.4.2.2-12. Características de abundancia, riqueza, diversidad y equitabilidad de las avifaunas de las unidades de vegetación evaluadas durante ambos periodos.

	durante ambos periodos.						
Unidad	Sitio	Especies	Individuos	Shannon- Wiener (H')	Simpson (1-D)	Equitabilidad	
Periodo Seco							
Acantilado	SM21	18.00	2412.00	2.0053	0.6176	0.4808	
	Promedio	18.00	2412.00	2.0053	0.6176	0.4808	
	SM05	12.00	20.00	3.4841	0.9050	0.9719	
	SM07	6.00	25.00	2.4367	0.8000	0.9429	
	SM09	9.00	21.00	3.0051	0.8617	0.9482	
	SM10	9.00	32.00	2.8392	0.8340	0.8955	
	SM11	9.00	43.00	2.8522	0.8405	0.8998	
Bosque seco con predominio de	SM12	10.00	43.00	3.1422	0.8718	0.9459	
algarrobos	SM14	15.00	56.00	3.7452	0.9184	0.9588	
	SM15	10.00	39.00	3.1249	0.8718	0.9405	
	SM17	20.00	77.00	3.7034	0.8828	0.8570	
	SM18	18.00	81.00	3.9068	0.9221	0.9370	
	SM19	16.00	48.00	3.7121	0.9097	0.9278	
	Promedio	12.18	44.09	3.27	0.8743	0.9296	
Bosque seco con predominio de	SM13a	3.00	3.00	1.5855	0.6667	1.0000	
sapotes	Promedio	3.00	3.00	1.5855	0.6667	1.0000	
Puerto	SM22	17.00	178.00	3.2345	0.8489	0.7913	
Fuerto	Promedio	17.00	178.00	3.2345	0.8489	0.7913	
Vegetación halófita de playas marina	SM01	20.00	527.00	2.4944	0.6818	0.5772	
	Promedio	20.00	527.00	2.4944	0.6818	0.5772	
Vegetación halófita	SM02	21.00	1110.00	3.1985	0.8346	0.7282	
de riberas de ríos	SM04	75.00	985.00	4.0828	0.8970	0.6555	
I .			1		1	1	

Unidad	Sitio	Especies	Individuos	Shannon- Wiener (H')	Simpson (1-D)	Equitabilidad
Periodo Seco						
	T				T	
	SM08	37.00	1739.00	3.3052	0.8522	0.6344
	SM13b	34.00	521.00	3.7827	0.8558	0.7436
	SM16	10.00	67.00	2.9546	0.8510	0.8894
	Promedio	35.40	884.40	3.4648	0.8581	0.7302
	1 101110410	33.13	33 11 13	0.1010	0.000	0002

Fuente: BISA, 2012

Figura 3.4.2.2-2. Abundancia y riqueza de especies total de la avifauna en las diferentes unidades de vegetación del área

Fuente: Bisa, 2012

El piquero patas azules *Sula nebouxii* fue la especie más abundante de todas (1399 individuos) considerando ambos periodos, aunque sólo se encuentra en la unidad de Acantilado durante el periodo seco (Fig. 3.4.2.2-3), en este mismo periodo el Cormorán Guanay *Phalacrocorax bougainvillii* y el piquero peruano

Sula variegata también presentaron notable abundancia en estas zonas frente al mar (Fig. 3.4.2.2-3).



Figura 3.4.2.2-3. Especies más abundantes en la unidad de Acantilados

Fuente: Bisa, 2012

En la unidad de vegetación de bosque seco con predominio de algarrobos fue el Frigilo cineréo *Piezorhina cinerea* la especies más abundante en ambos periodos de evaluación, seguida por el chisco *Mimus longicaudatus*, el minero peruano *Geositta peruviana* y el gallinazo cabeza roja *Cathartes aura* (Fig. 3.4.2.2-4).

Todas las especies fueron poco abundantes en el bosque seco con predominio de sapote, siendo el minero peruano *Geositta peruviana*, la especie con mayor número de individuos (12) en el periodo húmedo (Fig. 3.4.2.2-5).

Figura 3.4.2.2-4. Especies más abundantes en la unidad de bosque seco con predominio de algarrobos

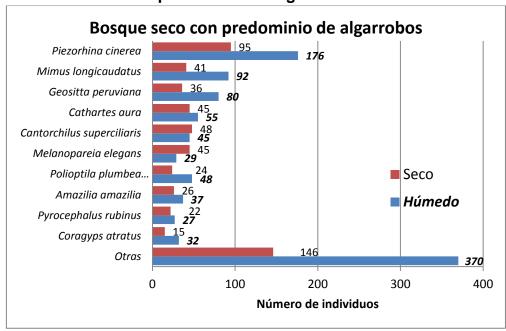
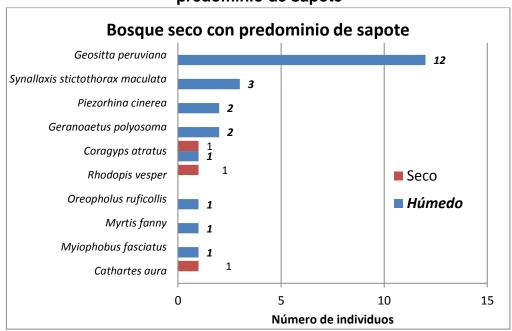
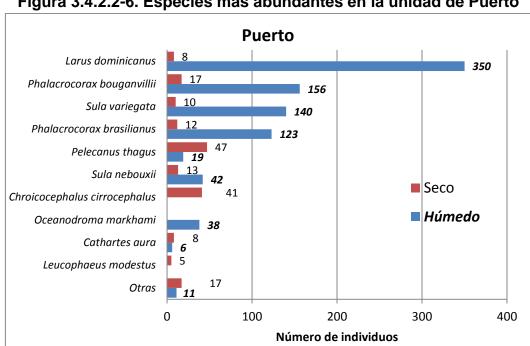
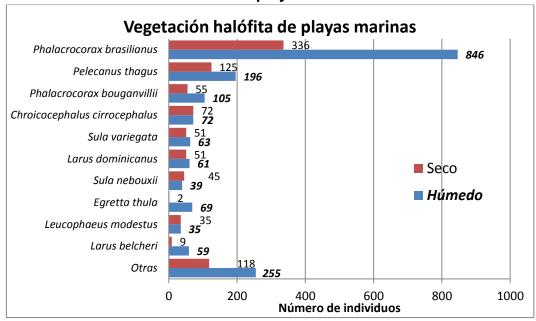



Figura 3.4.2.2-5. Especies más abundantes en la unidad de bosque seco con predominio de sapote

En la unidad de Puerto la especie más abundante fue la gaviota dominicana Larus dominicanus, seguida del cormorán guanay Phalacrocorax bougainvillii el piquero peruano Sula variegata y el cormorán neotropical Phalacrocorax brasilianus (Fig. 3.4.2.2-6).




Figura 3.4.2.2-6. Especies más abundantes en la unidad de Puerto

Fuente: Bisa, 2012

En las dos unidades de vegetación halófita la especie más abundante fue el cormorán neotropical Phalacrocorax brasilianus seguida en la correspondiente a playa marina por el pelícano peruano *Pelecanus thagus* y en la de riberas de ríos por la gaviota Larus dominicanus, (Figs. 3.4.2.2-7 y 3.4.2.2-8).

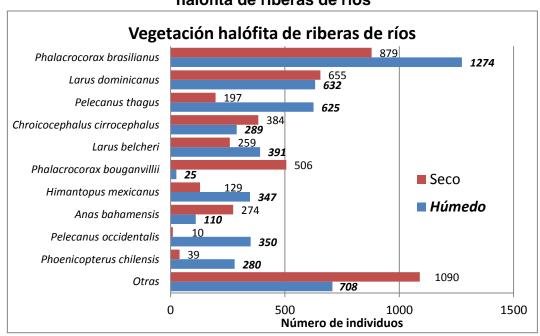

El conteo total de las aves fue comparado con datos de publicaciones previas hallándose en esta evaluación una avifauna rica y abundante (Anexo 3-8).

Figura 3.4.2.2-7. Especies más abundantes en la unidad de vegetación halófita de playas marinas

Fuente: Bisa, 2012

Figura 3.4.2.2-8. Especies más abundantes en la unidad de vegetación halófita de riberas de ríos

D. Biomasa

En el área de estudio son 25 las especies de aves (cuadro 3.4.2.2-20) características de un Bioma o gran región zoogeográfica en América (*sensu* Stotz *et al.* 1996), en su mayoría (17 especies) pertenecientes al bioma Costa del Pacífico Ecuatorial (EPC), siete especies al bioma Pacífico Subtropical (STP) y una sola especie al bioma Andes Centrales (CAN) el Yanavico *Plegadis ridgwayi* (cuadro 3.4.2.2-20).

Cuadro 3.4.2.2-20. Lista de especies de aves indicadoras de Biomas registradas en el área de estudio.

Especie	Nombre común	Bioma
Spheniscus humboldti	Pingüino de Humboldt	STP
Phoebastria irrorata	Albatros de las Galápagos	EPC
Pterodroma phaeopygia	Petrel de las Galápagos	EPC
Oceanodroma markhami	Golondrina de Mar de Markham	STP
Oceanodroma hornbyi	Golondrina de Mar Acollarada	STP
Pelecanus thagus	Pelícano peruano	STP
Sula variegata	Piquero peruano	STP
Plegadis ridgwayi	Ibis de la Puna (Yanavico)	CAN
Leucophaeus modestus	Gaviota gris	STP
Larosterna inca	Gaviotin Zarcillo	STP
Aratinga erythrogenys	Cotorra de Cabeza Roja	EPC
Forpus coelestis	Periquito Esmeralda	EPC
Myrmia micrura	Estrellita de Cola Corta	EPC
Furnarius leucopus	Hornero Patipálida	EPC
Synallaxis stictothorax	Colaespina Acollarada	EPC
Thamnophilus bernardi	Batará Acollarado	EPC
Melanopareia elegans	Pecholuna Elegante	EPC
Myiopagis subplacens	Elainia del Pacífico	EPC
Tumbezia salvini	Pitajo de Tumbes	EPC
Canthorchilus superciliars	Cucarachero Cejón	EPC
Cyanocorax mystacalis	Urraca Coliblanca	EPC
Piezorhina cinerea	Frigilo Cinéreo	EPC
Sicalis taczanowskii	Chirigüe Gargantiazufrada	EPC
Rhynchospiza stolzmanni	Gorrión de Tumbes	EPC
Icterus graceannae	Bolsero Filiblanco	EPC

3.4.2.2.6 Conclusiones

Las aves fueron en este estudio buenos indicadores ambientales pues su evaluación cualitativa y cuantitativa han permitido caracterizar el ambiente en su conjunto, así como los tipos de hábitats que contiene, permitiéndonos finalmente determinar las áreas de mayor importancia para las aves en el área del proyecto.

El éxito en el estudio de las aves en el ámbito de este proyecto se debe a los exigentes protocolos empleados y al gran esfuerzo de muestreo empleado. Destacando el exigente inventario, meticuloso censo y la documentación de la riqueza de aves por medio de la preservación de restos principalmente plumas individuales y fotos.

Se reportan para el área de estudio 166 especies distribuidas en 21 órdenes y 52 familias. Los órdenes de aves más importantes fueron Passeriformes con 46 especies, Charadriiformes con 47 especies y Pelecaniformes con 11 especies.

En el área de estudio la riqueza de especies de los bosques secos dominados por algarrobos o por sapote estuvo caracterizada por el dominio de los paseriformes principalmente Furnaridos. En los ambientes marinos y humedales destacaron los Charadriiformes, en donde las familias Haematopodidae, Recurvirostridae, Burhinidae, Charadriidae, Scolopacidae, Thinocoridae, Stercorariidae, Laridae y Rhynchopidae conformados por ostreros, alcaravanes, chorlos, gaviotas, gaviotines y ralladores fueron frecuentes. En los ambientes acuáticos también fueron importantes los Pelecaniformes con Pelecanidae, Ardeidae y Threskiornithidae, destacando en este grupo las garzas que mostraron una mayor riqueza de especies.

En el periodo húmedo se registraron 154 especies distribuidas en 11 órdenes en donde Passeriformes con Tyranidos y Thraupidos fueron los que presentaron mas especies principalmente en los ambientes boscosos y los Charadriiformes y

Pelecaniformes fueron los ordenes con mayor riqueza de especies en el ámbito del Estuario Virrila, el humedal La Niña y el litoral marino. En este periodo húmedo destacaron 51 especies reportadas únicamente en este periodo de las cuales 17 de ellas fueron migrantes boreales: Falco peregrinus, Pluvialis dominica, Pluvialis squatarola, Charadrius semipalmatus, Limnodromus griseus, Tringa solitaria, Actitis macularius, Calidris alba, Calidris pusila, Calidris mauri, Calidris minutilla, Calidris bairdii, Phalaropus tricolor, Phalaropus lobatus, Leucophaeus pipixcan, Xema sabin y Sterna hirundo. En este periodo también fue observada una especie migratoria austral Oceanodroma hornbyi.

En el periodo seco se observaron 115 especies distribuidas en 19 órdenes, de los cuales los Passeriformes y Charadriiformes reunieron la mayor riqueza de especies con 37 y 24 especies respectivamente. En el periodo seco destacaron 12 especies exclusivas a este periodo entre las que destacaron algunas muy vistosas como el Petrel de las Galápagos *Pterodroma phaeopygia*, la Pardela de Buller *Puffinus bulleri*, la Espátula rosada *Platalea ajaja*, el Ostrero negruzco *Haematopus ater* y otras migratorias, en su mayoría migrantes australes: *Procellaria aequinoctialis*, *Puffinus griseus* y *Sterna hirundinacea* y un único migratoria boreal *Anas discors*.

Las aves se mostraron bien relacionadas con sus particulares ambiente. La unidad de vegetación con mayor número de especies fue la Vegetación halófita de ribera de río con 123 especies, seguido por el Bosque seco con predominio de algarrobos con 82 especies, siendo los mismos ambientes los más ricos en especies en los periodos húmedo y seco.

Las aves de la Vegetación halófita de ribera de río fueron observadas en los espejos de agua del Estuario de Virrila y en el extremo SE de La Niña en donde se observaron 123 especies, 115 durante el periodo húmedo y 93 durante el periodo seco. Los sitios de muestreo más importantes fueron los del Estuario de Virrila, en especial el SM08 y SM04 con 70 y 75 especies respectivamente. Las

especies con poblaciones más abundantes que van desde cientos a miles de individuos fueron *Phalacrocorax brasilianus*, *Pelecanus thagus* y *Larus dominicanus*.

Las aves del Bosque seco con predominio de algarrobos fueron 82 especies observadas, en su mayoría (81) en el periodo húmedo. Predominaron durante el 2012 en este ambiente los Passeriformes, especialmente de las familias Tyrannidae y Thraupidae.

La evaluación cuantitativa del 2012 registro la mayor abundancia de aves (número promedio de aves por sitio de muestreo) en el Acantilados en el periodo Seco de evaluación (2412 aves/sitio), seguida por la Vegetación halófita de riberas de ríos durante el periodo húmedo (1258) y la Vegetación halófita de playa marina del mismo periodo (900).

Los mayores valores de diversidad se encontraron en el bosque seco con predominio de algarrobo en el periodo húmedo (H'= 3,80 bits/ind.), seguido por la Vegetación halófila de riberas de ríos en el periodo seco (H'= 3,50 bits/ind.). La evaluación cualitativa y cuantitativa mostraron los valores mayores de abundancia y riqueza de especies en la Vegetación halófita de riberas de ríos (en especial en el estuario Virrilá).

En la zona de estudio se registró un importante número de especies de importancia en conservación. Fueron 15 las especies de ave amenazadas según la legislación nacional vigente (D.S. 034-2004-AG): una "en peligro crítico" el petrel de las Galápagos *Pterodroma phaeopygia*, cinco especies "en peligro", cinco "vulnerable" y cuatro en la categoría de Menor Preocupación. Fueron 16 las especies de aves de interés en conservación bajo los parámetros internacionales más generalmente aceptados, entre los que destacaron el albatros de las Galápagos *Phoebastria irrorata*, el petrel de las Galápago *Pterodroma phaeopygia* y el gaviotín peruano *Sternura lorata*.

Durante el 2012 se observaron en el área de estudio 34 especies migratorias, una migratoria altitudinal, el Ibis de la Puna (Yanavico) *Plegadis ridgwayi*, seis migrantes australes y 27 especies migratorias boreales. Mostrando lo importante que será en el futuro los monitoreos en dos estaciones de evaluación.

Las especies congregarías acuáticas se mostraron muy importantes en el área de estudio, especialmente en el estuario de Virrila, el cual pudieran cumplirse algunos de los parámetros para la designación de sitio Ramsar en el mundo.

Si bien las especies migratorias y congregatorias son importantes en la zona de estudio especialmente en los ambientes acuáticos como el estuario de Virrila y el litoral marino, tres importantes especies de aves exclusivas de nuestro territorio o endémicas fueron observadas: el Minero Peruano *Geositta peruviana*, el Pitajo de Tumbes *Tumbezia salvini* y el Frigilo Cinéreo *Piezorhina* cinérea, observadas en el desierto y ambientes con bosque seco.

Finalmente el otro grupo importante de especies de aves fueron tres especies que presentaron alta prioridad de conservación (sensu Stotz et al. 1996), el Pingüino de Humboldt *Spheniscus humboldti*, la Golondrina de Mar de Markham *Oceanodroma markhami* y la Golondrina de Mar Acollarada *Oceanodroma hornbyi; una* especie más de muy alta prioridad de investigación fue la Estrellita de Collar Púrpura *Myrtis fanny*.

3.4.2.2.7 Bibliografía

- ANGEHR, G., AUCCA, C., & CHRISTIAN, D. 1998 Birds II: Biodiversity Assessment at Cashiriari-3 Well Site in tehe Lower Urubamba Region. In: (Alonso & Dallmeier, eds.) Biodiversity Assessment and Monitoring of the Lower Urubamba Region, Peru. Pp. 165-185.
- BANGS, O. & NOBLE, G.K. 1918. list of birds collected on the Harvard Peruvian Expedition of 1916. Auk, 35: 442-463.

- BEST, B.J., CLARK, C.T., CHECKER, M., BROOM, A., THEWLIS, R.M., DUCKWORTH, W. & MCNAB A. 1993. Distributional records, natural history notes and conservation of some poorly known birds from southwest Ecuador and northwestern Peru. Bull. B.O.C. 113: 108-119; 234-255.
- BERLIOZ, J. 1962. Notes critiques sur quelques espèces de Trochilides.
 Oiseau, 32: 135-144.
- BLANCO, D.E. & M. CARBONELL (Eds). 2001. El Censo neotropical de Aves Acuáticas. Los primeros 10 años:1990-1999. Wetlands Internacional. Buenos Aires. Argentina & Ducks Unlimited, Inc. Memphis, USA.
- BIBBY, C.J.; PHILLIPS, B.N.; & SEDDON, A.J. 1985. Birds of restocked conifer plantations in Wales. Journal of Applied Ecology. 22: 619-633
- BIBBY, C.J.; BURGESS, N.D. & HILL, D.A. 1993. Bird Census Techniques. Academic Press, Cambridge. 257pp.
- BIBBY, C.J. & CHARLTON, T.D. 1991. Observation on the San Miguel Bullfinch, Acoreana, 7: 297-304
- BIRDLIFE INTERNATIONAL. 2000. Threatened Birds of the World. Lynx Edic. and BirdLife Intl., Barcelona and Cambridge.
- BIRD LIFE INTERNATIONAL. 2003. BirdLife's online World Bird Database: the site for bird conservation. Versión 2.0. Cambridge: Bird Life International. Disponible en: http://www.birdlife.org (acceso 23/4/2004).
 Citado en Flanagan et al (2005).
- BIRD LIFE INTERNATIONAL 2004. Threatened Birds of the World. CD-ROM. Cambridge.
- BIRDLIFE INTERNATIONAL Y CONSERVACION INTERNACIONAL, 2005.
 Areas importantes para la conservación de las aves en los Andes Tropicales. Sitios prioritarios para la conservación de la biodiversidad.
 Birdlife Conservation. Serie No. 14. Quito, 730pp.
- BIRDLIFE INTERNATIONAL (2012) Important Bird Areas factsheet: Laquipampa. Downloaded from http://www.birdlife.org on 04/04/2012
- BIRDLIFE INTERNATIONAL (2012) Important Bird Areas factsheet: Isla Lobos de Afuera. Downloaded from http://www.birdlife.org on 04/04/2012

- BIRDLIFE INTERNATIONAL (2012) Important Bird Areas factsheet: Chiñama. Downloaded from http://www.birdlife.org on 04/04/2012
- BUCKLAND, S.T. 1987. On the variable circular plot method of estimating density. Biometrika. 43: 363-384.
- CAMPBELL, K.E. JR. 1971. First report of Sandwich Terns in Peru. Auk, 88: 676.
- CHUBB, C. 1919. Descriptions of new forms of South and Central American birds. Bull. Brit. Ornith. Club. 39: 41-42, 51-53, 70-72.
- CHUBB C. 1919. Notes on collections of birds in the British Museum, from Ecuador, Peru, Bolivia and Argentina. Ibis 61:1-55.
- CITES & UNEP. 2012. Convención sobre el comercio Internacional de especies amenazadas de fauna y flora silvestres. Apéndices I, II y III.
- CLEMENTS J. & N. SHANY. 2001. A Field Guide to the Birds of Peru. Ibis
 Publishing Company. California. 588 pp.
- CMS. 2012. Appendices I and II of the Convention on the Conservation of Migratory Species of Wild Animals (CMS) (as amended by the Conference of the Parties in 1985, 1988, 1991, 1994, 1997, 1999, 2002, 2005, 2008 and 2011) Effective: 23rd February 2012.
- COKER, R. 1920. Habits and economic relations of the guano birds of Peru. Proc. U.S. Nat. Mus. 56: 449-511.
- COLLAR, N,J.; GONZAGA, L.P.; KRABBE, N.; MADROÑO NIETO, A.; NARANJO, L.G.; PARKER, T.A. & WEGE, D.C. 1992. Threatened birds of the Americas: The ICBP/IUCN Red Data Book. Cambridge, UK: International Council for Bird Preservation.
- COLLINS, J.P. AND M.L CRUMP. 2009. Extinction in Our Times: Global Amphibian Decline. Oxford University Press, 273p.
- CUSHMAN, G. T. 2003. The Lords of Guano: science and the management of Peru's marine environment, 1800- 1973. Doctor of Philosophy Dissertation, University of Texas at Austin, Texas, pp. i-xvii, 1-762.
- DINERSTEIN, E., OLSON, D.M., GRAHAM, D.J., WEBSTER, A. L., PRIMM, S.A., BROOKBINDER, M. P. & LEDEC, C. 1995. A conservation

- assesssment of the terrestrial ecoregions of Latin America and the Caribbean. Washington, DC: World Bank.
- EL PERUANO, 2004. D.S. No. 034-2004-AG. Pp 276853-276855.
- FLANAGAN, J.N.M. & P. VELLINGA. 2000. Tres Bosques de neblina de Ayabaca: su avifauna y conservación. Piura: ProAvesPerú.
- FLANAGAN, J. N. M., IRMA FRANKE, Y LETTY SALINAS 2005. Aves y endemismo en los bosques relictos de la vertiente occidental andina del norte del Perú y sur del Ecuador. In Los Bosques Relictos del NO de Perú y SO de Ecuador (Maximilian Weigend, Eric F. Rodriguez, and César Arana, Compilers). Revista Peruana de Biología, 12: 239-248.
- FRANKE, I.; MATTOS, J.; SALINAS, L.; MENDOZA, C. & S. SAMBRANO. 2005. Areas Importantes para la Conservación de las Aves en Perú. Pp. 471-510 en BirdLife Internacional y Conservación Internacional. Areas Importantes para la Conservación de las Aves en los Tropicales: sitios prioritarios para la conservación de la biodiversidad. Quito, Ecuador. (Serie de Conservación de BirdLife No. 14).
- GIBBS, J. P, SNELL, H.L. & GASTON, C.E. 1999, Effective monitoring for adaptive wildlife management: lessons from the Galàpagos islands. J. Wildl. Manage. 63, 1055–1065.
- HAFFER. J. 1974. Avian speciation in tropical South America. Nuttall Ornith. Club Publ., No. 14, 390 pp.
- HILTON-TAYLOR, C. 2000. 2000 IUCN Red List of Threarened Species.
 IUCN, Gland, Switzerland and Cambridge, UK.
- HILTY, S. 1994. Birds of Tropical America: A watcher's introduction to behavior, breeding and diversity. Chapters Publishing Ltd. Shelburne, Vermont.
- IUCN 2012. The IUCN Red List of Threatened Species. Version 2012.1. http://www.iucnredlist.org. Downloaded on 19 June 2012.
- KOEPCKE, H. W. 1961. Synökologische Studien an der Westseite der peruanischen Anden. Bonn. Geogr.. Abhand., 29, 320 pp.

- KOEPCKE, M. 1961. Birds of the western slope of the Andes of Peru. Amer. Mus. Novit., no. 2028, 31 pp.
- KOEPCKE, M. 1964. Las Aves del Departamento de Lima. Edit. Morson. Lima.
- KOEPCKE, H. & M. KOEPCKE 1982. Erläuterung der Beobachtungs und Sammler –Nummern zu den in den Jahren 1949 bis1974 in Peru durchgeführten biologischen Studien. Hamburg.
- KOSKIMIES, P. & VÄISÄNEN, R.A. (eds.) 1991. Monitoring Bird Populations. Finnish Museum of Natural History, Helsinki.
- KREBS, CH. 1998. Ecological Methodology. 2da. Ed. Harper & Row Publishers, New York.
- LESSON, R. & GARNOT, P. 1826. In L. I. Duperry, Zoologie in Voyage autour du Monde sur la Corvette, "La Coquille". A. Bertrand, Paris, 1: 246-269.
- MacFARLANE, J.R.H. 1887. Notes on birds in the western Pacific, made in H. M. S. "Constance", 1883-1885. Ibis 1887: 201-215.
- MAGURRAN, A. E. 1991. Ecological Diversity and its Measurement. Chapman & Hall. New York.
- MANU EXPEDITIONS. 2007. Field Report North Peru: Tumbesian Endemics. Led by Fernando Angulo with Jeffrey Kruk and Norka Ruiz Bravo.
- MURPHY, R.C. 1936. Oceanic birds of South America. Amer. Mus. Nat. Hist., New York, 2 vols., 1245 pp.
- NATURESERVE. 2012. Infonature. Disponible en internet: < http://www.natureserve.org/infonatura/> Consultado: junio 2012.
- NOSS, R. F. 1990, Indicators for monitoring biodiversity: A hierarchical approach. Conserv. Biol. 4, 355–264.
- OFICINA DE LA CONVENCIÓN DE RAMSAR, 2000. Manuales Ramsar para el uso racional de los humedales. Marco estratégico y lineamientos para el desarrollo futuro de la lista de humedales de importancia internacional. Manual No.7. Gland (Suiza), 60 p.

- O'NEILL, J.P. 1992. A general overview of the montane avifauna of Peru. Memorias del Museo de Historia Natural UNMSM (Lima) 21: 47-55.
- O'NEILL, J.P. 1996. Sugerencias para áreas protegidas basadas en la avifauna peruana. In: Rodríguez, L. (Ed.) Diversidad Biológica del Perú. Zonas Prioritarias para su Conservación. GTZ-INRENA, Lima.
- OIA-MINAG. 2001. Estadística Agrícola Trimestral 2000- 2001. OIA-MINAG. Peru.
- ONERN. 1989. Inventario y Evaluación de los recursos naturales de las microrregiones de Oyón y Cajatambo. Departamento de Lima, ONERN, Lima.
- PAINE, R. T.: 1995, A conversation on refining the concept of keystone species. Conserv. Biol. 9,962–964.
- PLENGE, M. Lista de Aves del Perú. 2012. Boletín UNOP. 41pp
- PYHÄLÄ, M. 2001. Informe ornitológico de una visita al norte del Perú: Tumbes-Lambayeque 1998 1999. Boletín de Lima, no. 123: 100-111.
- PULIDO, V. 1991. Libro rojo de la fauna silvestre. Instituto Nacional de Investigación Agraria y Agroindustrial. Lima.
- PULIDO, V. 1998. Vocabulario de los nombres comunes de la fauna silvestre del Perú. Lima.
- REYNOLDS, R.T.; SCOTT, J.M. & NUSSBAUM, R.A. 1980. A variable circular plot method for estimating birds numbers. Condor 82: 309-313.
- RIDGELY, R. & TUDOR, G. 1989. The Birds of South America. Volume I.
 The oscine passerines. University of Texas Press. Austin.
- RIDGELY, R. & TUDOR, G. 1994. The Birds of South America. Volume II.
 The suboscine passerines. University of Texas Press. Austin.
- RODRIGUEZ, L.O. (Ed.). 1996. Diversidad Biológica del Perú: zonas prioritarias para su conservación. Proyecto FANPE, GTZ-INRENA. Lima.
- SALINAS, L. & ARANA, C. 2004. Avifauna de las lomas del departamento de Lima, Perú. (Avifauna of the Lomas of Lima, Peru). In Libro de Resumes de la XIII Reunión Científica del Instituto de Investigaciones Antonio Raimondi. UNMSM. Lima, Perú. Pp 54

- SALINAS, L., C. ARANA & V. PULIDO. 2007. Diversidad, Abundancia y Conservación de Aves en un agroecosistema del desierto de Ica, Perú. Revista Peruana de Biología (Número Especial: Avances de las ciencias biológicas en el Perú) 13(3): 155-167.
- SALVIN, O. 1883. A list of the birds collected by Captain A. H. Markham on the west coast of America. Proc. Zool. Soc. London, 1883: 419-432.
- SCHULENBERG, T. S. & PARKER, T.A. 1981. Status and distribution of some northwest Peruavian birds. Condor, 83: 209-216.
- SCHULENBERG T.S., D.F. STOTZ, D. F. LANE, J.P. O'NEILL & T.A. PARKER. 2010. Aves del Peru. Princeton Unity Press. Chicago. 656 pp.
- SHORT, L. & MORONY, J. 1969. Notes on some birds of central Peru. Bull. Brit. Ornith. Club, 89:112-115.
- STATERSFIELD, A.; CROSBY, M., LONG, A. & C. WEGE. 1998. Endemic Bird Areas of the world: Priorities for Biodiversity Conservation. BirdLife International (Birdlife Conservation Series Nº 7). UK.
- STEPHENS, L & M.TRAYLOR JR. 1983. Ornithological gazetteer of Peru. Harvard University. Massachusetts.
- STOTZ, D.; J. FITZPATRICK; T. PARKER & D. MOSKOVITS. 1996.
 Neotropical Birds. Ecology and Conservation. University of Chicago,
 Chicago.
- STUART, S.N., J.S. CHANSON, N.A. COX, B.E. YOUNG, A.S.L. RODRIGUES, D.L. FISCHMAN, AND R.W. WALLER. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306:1 783-1786.
- STUCCHI M., JUDITH FIGUEROA, GINA MORI Y FELIPE FLORES. 2011.
 Revisión y actualización de la avifauna de las islas Lobos de Afuera (Perú).
 Boletín UNOP. Vol. 6 Número 01.
- TACZANOWSKI, L. 1884B. Onithologie du Perou. Vol. 2. Oberthur, Paris, 566 pp.

- TACZANOWSKI, L. 1877a. Liste des oiseaux recueillisen 1876 au nord de Perou occidental par MM Jelski et Stolzmann. Proc. Zool. Soc. Lond. :319-333.
- TACZANOWSKI, L. 1877b. Supplement à la liste des oiseaux recueillis au nord du Perou occidental par MM Jelski et Stolzmann. Proc. Zool. Soc. Lond.:744-754.
- TOVAR, S. H. 1969. Áreas de reproducción y distribución de las aves marinas en el litoral peruano. Bol. Inst. Mar Perú-Callao, I: 523-546.
- VAURIE, C. 1972. An ornithological gazetteer of Peru (based on information compiled by J. T. Zimmer). Amer. Mus. Novit., No 2491, 36 pp.
- VERRIL, G.E. 1923. Rough notes on the avifauna of Paita, Peru. Auk 40: 303-312.
- VELARDE, D. (Ed.) 1998. Resultado de los Censos Neotropicales de Aves Acuáticas en el Perú 1992-1995. Programa de Conservación y desarrollo sostenido de humedales, Perú, Lima.
- WEGE, D. & LONG, A. 1995. Key areas for threatened birds in the Neotropics. Birdlife Conservation Series No. 5, Birdlife International, Cambridge.

3.4.2.3 Fauna – Reptiles

3.4.2.3.1 Introducción

En Perú, la mayor riqueza de especies de herpetofauna se encuentra en los bosques húmedos de la cuenca Amazónica ("Selva Baja"), sin embargo aquellas especies presentes en los bosques montanos nubosos ("Selva Alta" o "Ceja de Selva") o en zonas andinas son importantes por su endemismo (característicos específicos de un solo ecosistema). Al igual que las especies de los hábitats costeros, en donde las temperaturas de suelo y aire en los meses de verano son altas y los valores de precipitación anual son bajos, por lo que las especies residentes aquí demuestran una alta adaptabilidad solo a estos ecosistemas y no se les podrá encontrar en hábitats diferentes, en este factor radica la importancia de la herpetofauna de las zonas costeras.

Ciertamente, los reptiles de la costa de Perú, incluyendo algunas especies del bosque seco ecuatorial, han sido investigados con anterioridad por autores que proporcionan información básica sobre la taxonomía y ecología en lagartijas del género *Dicrodon* (Schmidt, 1957) y del género *Microlophus* (Dixon & Wright, 1975), gekos del género *Phyllodactylus* (Dixon & Huey, 1970; Huey, 1979) y serpientes (Schmidt & Walker, 1943). El estudio más actual acerca de la herpetofauna de alguna zona del norte de Perú, es el de Catenazzi y Donelly (2007) los que evaluaron los efectos del fenómeno del niño sobre las poblaciones de lagartijas de la familia Phyllodactylidae en puntos de muestreo cercano a Cerro Illescas, un área muy cercana al área de estudio objeto de esta investigación.

Aunque todos estos estudios tiene una vital importancia para le conocimiento de las especies de la cuenca del Pacífico en al región norteña peruana, actualizaciones a cerca de la riqueza y diversidad de especies de reptiles en la zonas de Bayovar, Illescas o Sechura son escasas o nulas, y a pesar de que

algunas evaluaciones ambientales para proyectos de minerales contemplaron evaluaciones en zonas desérticas de Sechura, muchos de estos datos no han sido publicados o no son accesibles de manera pública, de manera que no contribuyen ni aportan al conocimiento de la herpetofauna en el norte de Perú. Es necesario remarcar, que una de las más importantes actualizaciones y recopilaciones de información acerca de la herpetofauna de la región occidental del norte de Perú, fue hecha por Venegas (2005), sin embargo, este estudio está basado en la herpetofauna habitante de los bosques secos ecuatoriales, y no de las zonas desérticas, como es este caso.

Por tanto, debido a la importancia de conservar esta ecorregión rica en endemismos y tratando de llenar el vació de información referente a su herpetofauna, además de la necesaria lista de especies ocurrentes en el ámbito del área de influencia de un proyecto de extracción de Fosfatos en Sechura, se presentan a continuación, los procedimientos y resultados de la mencionada evaluación.

3.4.2.3.2 Objetivos

- Actualizar los datos de ocurrencia y distribución de las especies objeto del proyecto
- Actualizar el inventario de especies para el área de influencia del proyecto
- Obtener datos preliminares del estado de las poblaciones de las especies ocurrentes en el área de influencia del proyecto.

3.4.2.3.3 Área de estudio

El área de estudio está dentro de la ecorregión Desierto Costero (Brack, 1986), sin embargo más específicamente es un bosque estacionalmente seco que crece por debajo de los 100 m y está distribuido a lo largo de las planicies costeras del sur del departamento de Piura (incluida la Provincia de Sechura). Está compuesto

principalmente por *Prosopis sp* y *Capparis scabrida* y en menor medida por *Capparis aviceniifolia* todas arbustivas, aunque en ocasiones llegan a formar pequeños árboles. La flora acompañante está compuesta por *Parkinsonia praecox*, *Galvezia fruticosa*, *Encelia canescens* y *Acacia macracantha*.

Para un mejor análisis se estratificó el área de estudio en unidades de vegetación, habiéndose evaluado para la herpetofauna 3 de estas unidades: Bosque seco con predominio de Algarrobo (BSPA), Vegetación Halofila de rivera de río (VHRR) y Vegetación halófila de playa marina (VHPM).

El BSPA se caracterizó por tener una alta densidad de árboles de *Prosopis spp* que pueden medir entre 4 y 5 m, con parches muy densos de este género y otros más ralos, en algunos casos además están presentes parches de *Capparis spp*, usualmente sobre dunas las que en ciertos sectores del área, predominan sobre los parches de Algarrobo, el suelo puede ser arenoso o cubierto por cascajo, arenoso usualmente mientras más se aleja de la zona litoral, la pendiente es usualmente nula en esta unidad de vegetación.

El VHRR se caracterizó por tener una vegetación arbustiva y herbácea, el suelo es arenoso y con evidente presencia de partículas de sal que en algunas zonas forman agrupaciones solidas de este mineral, además se evidencian la presencia de plantas del tipo suculentas en el área, los arbustos son espinosos y no existe presencia de árboles en esta unidad de vegetación. La pendiente es nula y la humedad relativa evidentemente alta debido a su cercanía con cuerpos de agua.

El VHPM se caracterizó principalmente por estar siempre cerca de zonas litorales, tiene una vegetación herbácea dominada por suculentas y algunas hierbas espinosas, el suelo es arenoso y con evidente presencia de partículas de sal, no existe presencia de arbustos o árboles en esta unidad de vegetación. La pendiente es nula y la humedad relativa evidentemente alta debido a su cercanía con el mar.

Además, con la finalidad de entender mejor la distribución de la herpetofauna en el área de estudio, se estratificó el área en hábitats, de los cuales son solo 4 los importantes para nuestro análisis: A) Algarrobal-Zapotal, Arboles de Algarrobos en su mayoría no muy altos (2.5m) y dispersos, acompañados con Capparis spp dispuestos en dunas en donde estos cubren la duna y en algunas se evidencian arbustos de Capparis avicennifolia ubicados también en dunas. Suelo arenoso; B) Matorral espinoso, presenta predominantemente arbustos espinosos y algunas herbáceas, el suelo es rocoso y las pendientes son fuertes, se ubica en morros o montañas colindantes con las zona litoral; C) Algarrobal en hondonadas o quebradas secas, presentan arboles de Algarrobos grandes de más de 2 metros y no tan dispersos, además aparecen otros árboles (sapote y palo verde) pero en menor abundancia. Suelo en su mayoría cascajo y pedregoso; D) Roquedal marino, este hábitat estuvo formado principalmente por sustrato rocoso, húmedo debido al constante baño de las olas marinas, se encuentra en la zona litoral del área, la vegetación aquí consistió de algas del tipo sésiles y otras móviles como Macrocystis spp.

En el plano **830MA0001A-010-20-026** se identifican las estaciones de muestreo para el componente hertpetología.

3.4.2.3.4 Metodología

Para la presente evaluación se utilizaron dos métodos probados reiteradamente en numerosas evaluaciones en distintas ecorregiones, y son además los métodos más recomendados para evaluar herpetofauna de manera que sean comparables con evaluaciones en cualquier otro ecosistema (Heyer et.al., 1994): los Transectos visuales y los Relevamientos por encuentros visuales (REV), para el primero se trazaron líneas de 100 m de largo por 2 m de ancho (200m²) que se recorrieron uniformemente y en un mismo sentido por dos investigadores (en algunos casos tres) durante un tiempo no determinado, pues el tiempo dependerá siempre de la cantidad de refugios y microhabitats de potencial ocurrencia para

anfibios o reptiles presentes en una unidad muestreal esto podría ocasionar que la evaluación de dicha unidad tome más o menos tiempo, para la segunda metodología, se fijaron zonas de evaluación, en donde se trazaron líneas no necesariamente rectas en áreas de potencial registro tanto para anfibios como reptiles de manera que se puedan recorrer las zonas y hábitats en donde se esperaría poder capturar estos organismos, el patrón estándar en esta metodología fue el tiempo, el cual fue de 30 min para cada REV y aunque fue una metodología usada en todos los puntos de muestreo, fue utilizada en menor intensidad que los transectos visuales, por ser una metodología que al no permitir tener un área definida de muestreo, no otorga datos que ayuden a analizar el estado poblacional de las especies en cuestión. Se evaluaron en total 32 transectos y 8 REV, lo que da por resultado un área evaluada aproximada de 6000 m², el detalle de la ubicación de estos transectos se muestra en el cuadro 3.4.2.3-1 y en el plano 830MA0001A-010-20-026.

Cuadro 3.4.2.3-1. Ubicación de los puntos de muestreo evaluados.

VES / Temporad		Coordenadas UTM (WGS 84)				Altitud	Fecha de
Transect	a		Zoi	na 17		(m)	muestreo
0		Ini	icio	F	in	. ,	
T-1		0550044	9344196	0550156	9344193	18	04/07/2012
T-2		0550262	9344191	0550342	9344257	20	04/07/2012
T-3	Seca	0550421	9344219	0550520	9344254	22	04/07/2012
T-4		0550576	9344281	0550679	9344264	22	04/07/2012
REV-1		0550101	9344167	0550112	9344174	15	04/07/2012
REV-2		0550669	9344397	0550526	9344483	27	04/07/2012
T-1		0546476	9343308	0546470	9343412	9	04/07/2012
T-2	Seca	0546621	9343550	0546724	9343514	23	04/07/2012
T-3		0546814	9343469	0546931	9343484	19	04/07/2012

VES / Transect	Temporad	Co	Coordenadas UTM (WGS 84) Zona 17				Fecha de
O	а	Ini	icio		in	(m)	muestreo
T-4		0547114	9343537	0547156	9343634	21	04/07/2012
REV-1		0546557	9343472	0546572	9343485	21	04/07/2012
REV-2		0546970	9343489	0547028	9343524	21	04/07/2012
T-1		0521147	9342469	0521075	9342394	43	06/07/2012
T-2		0521037	9342370	0521028	9342474	44	06/07/2012
T-3	Seca	0520957	9342487	0520852	9342463	43	06/07/2012
T-4		0520457	9342636	0520411	9342733	48	06/07/2012
REV-1		0520837	9342463	0520840	9342361	45	06/07/2012
REV-2		0520389	9342935	0520482	9342894	50	06/07/2012
T-1		0527923	9339653	0527902	9339551	28	03/07/2012
T-2		0527831	9339476	0527728	9339504	34	03/07/2012
T-3	Seca	0527814	9339293	0527710	9339282	32	03/07/2012
T-4	0000	0527656	9339219	0527557	9339178	35	03/07/2012
REV-1		0527874	9339287	0527969	9339130	34	03/07/2012
REV-2		0527444	9339111	0527498	9339105	32	03/07/2012
T-1	Seca		9347742	0514824	9347845	15	06/07/2012

VES / Transect	Temporad	Ce	Coordenadas UTM (WGS 84) Zona 17		Altitud	Fecha de	
0	а	Ini	icio	Fin		(m)	muestreo
		0514842					
T-2		0514700	9348059	0514602	9348095	16	06/07/2012
T-3		0514594	9348109	0514528	9348194	18	06/07/2012
T-4		0514438	9348154	0514449	9348047	20	06/07/2012
REV-1		0514817	9347926	0514722	9347982	15	06/07/2012
REV-2		0514548	9347769	0514697	9347664	18	06/07/2012
T-1		0500308	9352001	0500244	9352034	51	08/07/2012
T-2		0500191	9352101	0500083	9352104	55	08/07/2012
T-3	Seca	0500034	9352139	0499940	9352182	56	08/07/2012
T-4		0499889	9352224	0499801	9352278	51	08/07/2012
REV-1		0499766	9352287	0499793	9352328	51	08/07/2012
REV-2		0499776	9352472	0499764	9352507	53	08/07/2012
T-1		0509970	9355535	0510035	9355458	11	07/07/2012
T-2	Seca	0509983	9355546	0510047	9355469	13	07/07/2012
T-3		0509996	9355558	0510058	9355480	13	07/07/2012
T-4		0510012	9355571	0510073	9355490	13	07/07/2012

VES / Transect	Temporad	Co	Coordenadas UTM (WGS 84) Zona 17			Altitud	Fecha de
o	а	Ini	icio	F	in	(m)	muestreo
T-1		0528803	9350677	0528927	9350603	8	07/07/2012
T-2		0528694	9350572	0528694	9350467	9	07/07/2012
T-3	Seca	0528633	9350190	0528590	9350101	12	07/07/2012
T-4		0528565	9350090	0528490	9350011	13	07/07/2012
REV-1		0528722	9350384	0528667	9350228	10	07/07/2012
REV-2		0528727	9350025	0528967	9350515	13	07/07/2012
T-1		0492459	9360370	0492509	9360460	23	05/07/2012
T-2		0492513	9360471	0492543	9360571	14	05/07/2012
T-3	Seca	0492381	9357816	0492308	9357743	185	05/07/2012
T-4		0492293	9357735	0492264	9357634	175	05/07/2012
REV-1		0492550	9360606	0492600	9360600	11	05/07/2012
REV-2		0492291	9357649	0492452	9357697	173	05/07/2012
T-1		0551417	9344677	0551318	9344637	11	28/04/2012
T-2	Humeda	0551108	9344607	0551002	9344583	13	28/04/2012
T-3		0550849	9344546	0550767	9344477	16	28/04/2012
T-4			9344435	0550526	9344405	22	28/04/2012

VES / Transect	Temporad	Coordenadas UTM (WGS 84) Zona 17			Altitud	Fecha de	
0	а	Inicio		Fin		(m)	muestreo
		0550629					
REV-1		0550405	9344331	0549882	9344189	23	28/04/2012
T-1		0549742	9344122	0549641	9344160	17	28/04/2012
T-2		0549518	9344189	0549409	9344201	19	28/04/2012
T-3	Humeda	0549255	9344171	0549146	9344162	21	28/04/2012
T-4		0549013	9344103	0548938	9344026	23	28/04/2012
REV-1		0548790	9343987	0548203	9343920	22	28/04/2012
T-1		0521138	9342474	0521030	9342462	42	29/04/2012
T-2		0521013	9342322	0521029	9342217	44	29/04/2012
T-3	Humeda	0520583	9342054	0520538	9342151	51	29/04/2012
T-4		0520590	9342256	0520701	9342264	55	29/04/2012
REV-1		0521041	9342081	0520682	9342039	48	29/04/2012
T-1		0527791	9339575	0527768	9339469	42	29/04/2012
T-2	Humeda	0527779	9339332	0527698	9339261	41	29/04/2012
T-3		0527581	9339882	0527478	9339843	38	29/04/2012
T-4		0527369	9339859	0527283	9339922	36	29/04/2012

_VES/	Temporad	Coordenadas UTM (WGS 84) Zona 17				Altitud	Fecha de
Transect o	а	Ini	Zor icio		in	(m)	muestreo
DEVA			0220070	0507400	0220500	27	20/04/2042
REV-1		0527091	9339878	0527169	9339586	37	29/04/2012
T-1		0514783	9347699	0514867	9347767	13	30/04/2012
T-2		0514975	9347816	0515077	9347861	14	30/04/2012
T-3	Humeda	0515047	9347972	0515010	9348069	16	30/04/2012
T-4		0515009 0	9348443	0515141	9348538	19	30/04/2012
REV-1		0515026	9348183	0515076	9348357	17	30/04/2012
T-1		0500310	9352001	0500233	9352075	52	01/05/2012
T-2		0500185	9352105	0500093	9352160	53	01/05/2012
T-3	Humeda	0500056	9352194	0500078	9352297	54	01/05/2012
T-4		0500083	9352348	0500123	9352446	50	01/05/2012
REV-1		0500207	9352496	0500163	9352278	48	01/05/2012
T-1		0509619	9354822	0509671	9354879	5	01/05/2012
T-2	Humeda	0509680	9354885	0509763	9354953	6	01/05/2012
T-3		0509779	9354975	0509856	9354901	7	01/05/2012
T-4		0509864	9354905	0509901	9355002	5	01/05/2012

VES / Transect	Temporad a	Coordenadas UTM (WGS 84) Zona 17				Altitud (m)	Fecha de muestreo
0		Ini	Inicio Fin		()		
REV-1		0509956	9355029	0510168	9354931	6	01/05/2012
T-1		0528818	9350729	0528731	9350666	5	02/05/2012
T-2		0528766	9350621	0528678	9350563	10	02/05/2012
T-3	Humeda	0528558	9350586	0528482	9350657	14	02/05/2012
T-4		0528465	9350789	0528433	9350887	13	02/05/2012
REV-1		0528781	9351039	0528993	9350941	12	02/05/2012

Fuente: BISA, 2012

El éxito de captura y la riqueza de especies fue estimada mediante un análisis de rarefacción utilizando el programa PAST (Hammer et.al., 2001), en orden de evitar un potencial sesgo de la información que tenga que ver con el tamaño de muestreo por cada punto evaluado. Hammer et.al. (2001) explican que para obtener los valores de esta estimación se utiliza un algoritmo gamma que se basa en una función binomial, la que tiene que ver con el número de especies, la abundancia y el esfuerzo de muestreo utilizado en una evaluación. Aquí, se utiliza este método para obtener el valor esperado de riqueza en el área de estudio, y aunque el objetivo principal no es obtener el valor real de riqueza de especies de la zona, si obtener valores que puedan permitir comparar estos resultados con futuras evaluaciones.

La diversidad de cada sitio de muestreo fue calculada mediante los índices de diversidad de Shannon-Wiener y Simpson tomando en cuenta los registros por unidad de vegetación, índice que toma en cuenta el número de especies de un sitio y su abundancia, para cotejarlas entre sí, los sitios con alto valor de número

de especies y abundancias relativamente equitativas entre las mismas tienden a tener mayores valores de diversidad que otros, pues, en estos casos, la hipótesis a tomar es que la posibilidad de que un individuo registrado sea de una especie al individuo anterior, es muy alta, y esto solo pasa en sitios con alta diversidad donde las comunidades de un taxón, tiene una distribución ecológica equilibrada.

Las preferencias de hábitats por cada especie registrada son mostradas en gráficos de barras utilizando el programa Excel, y la compatibilidad hacia posibles simpatrías por parte de las especies en función del uso de hábitat son mostrados mediante clusters estructurados por distancia euclidiana, esto es la distancia geométrica entre dos puntos en un espacio determinado, este es un método utilizado no solo aquí, sino ampliamente efectivo para distintos estudios ecológicos (Mueller et al 2004) y es ampliamente recomendado cuando las variables analizadas son independientes una de la otra, como es el caso de las variables usadas (especies registradas) aquí.

La actividad de cada especie registrada fue evaluada mediante los datos tomados en campo, basados básicamente en el numero de avistamientos por parte del evaluador hacia cada especie registrada, se estructuraron gráficos de barras con el programa Excel, que explican los picos de actividad de las especies ocurrentes en el área de estudio, estratificando el tiempo por horas evaluadas, de manera que se puede determinar durante que hora del día una u otra especie es más activa que otra.

3.4.2.3.5 Resultados

El total de unidades de muestreo fue de 96, repartidas en: 32 transectos y 8 REV durante la época húmeda y 36 transectos y 20 REV durante la época seca, esto da por resultado que en total se han evaluado: 16400 m² (16.4 Km²), lo evaluado a la época húmeda corresponde a 7200 m² (6400 m² en los transectos y 800 m² en los REV), mientras que para la época seca se evaluaron: 9200m² (7200 m² en

los transectos y 2000 m² en los REV). Asi, teniendo en cuenta que se tomo para cada REV 30 minutos de evaluación y que para cada transecto se emplearon también 30 minutos todos con repeticiones nocturnas de la evaluación diurna, el esfuerzo de muestreo total resultó en 303.5 horas-hombre, el detalle de el esfuerzo de muestreo en esta evaluación se da en la cuadro 3.4.2.3-2.

Cuadro 3.4.2.3-2. Esfuerzo de muestreo en esta evaluación

	Época húmeda							
No de	No de	No de	Tran	sectos	F	REV	Esfuerzo	
Transectos	REV	personas	Esfuerzo diurno	Esfuerzo nocturno *	Esfuerzo diurno	Esfuerzo Nocturno *	Total (Horas- hombre)	
			32horas-	16 horas-	8 horas-	4 horas-		
32	8	2	hombre	hombre	hombre	hombre	60	
			Épo	ca seca				
No de	No de	No de	Trans	sectos	R	EV	Esfuerzo	
Transectos	REV	personas	Esfuerzo	Esfuerzo	Esfuerzo	Esfuerzo	Total (Horas-	
Transectos	IXE V	personas	diurno	nocturno	diurno	nocturno	hombre)	
			72 horas-	72 horas-	40 horas-	40 horas-		
36	20	4	hombre	hombre	hombre	hombre	224	

Fuente: BISA, 2012

En dos evaluaciones (temporada seca y húmeda) se lograron registrar 12 especies de reptiles en el área de estudio, estas doce especies estuvieron distribuidas en 7 familias, los géneros representados por estas especies fueron los de lagartijas: *Amphisbaena* (1), *Callopistes* (1), *Dicrodon* (2), *Microlophus* (3) y *Phyllodactylus* (2) y los de serpientes *Alsophis* (1), *Bothrops* (1) y *Micrurus* (1), en la temporada húmeda se registraron 7 especies mientras que en la seca se registraron 12 especies, repitiéndose la anteriormente registradas y añadiéndose 5 especies más, esto se da probablemente porque las condiciones de radiación solar y temperatura durante esta última, fueron óptimas para el desplazamiento de más especies de reptiles, organismos ectotérmicos que dependen de la temperatura ambiental, e hizo más fácil su registro por parte de los evaluadores, el detalle de las especies registradas se muestra en la cuadro 3.4.2.3-3.

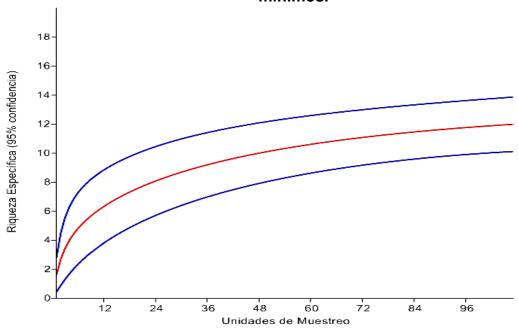
^{*}Esfuerzo de muestreo solo con una persona.

Cuadro 3.4.2.3-3. Especies registradas en el área de estudio.

Т	AXA				
Familia	Especie	Nombre común	Época Húmeda	Época Seca	Tipo de Registro
	Dicrodon guttulatum	Cañán	х	х	V
TEIIDAE	Dicrodon heterolepis	Cañán	Х	Х	٧
	Callopistes flavipunctatus	Iguana negra	х	х	v
	Microlophus occipitalis	Capón	х	х	٧
TROPIDURIDAE	Microlophus peruvianus	Capón de las playas		х	v
	Microlophuss thoracicus talarae	Capón	х	х	v
GEKKONIDAE	Phyllodactylus microphyllus	Jañape	х	х	v
	Phyllodactylus kofordi	Jañape		Х	V
AMPHISBAENIDAE	Amphisbaena occidentalis	Culebra ciega		х	v
COLUBRIDAE	Alsophis elegans	Culebra		х	V
VIPERIDAE	Bothrops barnetti	Sancarranca, La "X", Macanche		х	m
ELAPIDAE	Micrurus tschudii olssoni	Coral, Coralillo	Х	Х	V

Fuente: BISA, 2012

v= registro visual, m= registro a través de muda


El análisis del éxito de captura, en el que se tomaron en cuenta los registros de ambas temporadas, arrojó una curva que no se estabiliza en una asíntota hacia el final de la misma. Es remarcable que se utilizaron los datos tanto de los transectos de muestreo como de los REV para este análisis, lo que constituye entonces, que se han tomado en cuenta los registros de 96 Unidades de muestreo: 28 REV y 68 Transectos. Aunque el resultado de este análisis no representa una afirmación acerca de los valores de riqueza reales para el área de

estudio, es evidente que el número de especies registradas no es aun cercano al número de especies presentes aquí, tal como lo corrobora por ejemplo, los estudios realizados anteriormente en el área (Dixon, 1979, Dixon y Wright, 1982; Venegas, 2005).

La curva, aunque no se estabiliza, es a partir de las 84 unidades muestrales que muestra una pendiente menos pronunciada, lo cual significa que el esfuerzo de muestreo ha tenido que ser relativamente fuerte para poder llegar a estabilizarla y con un número de especies relativamente moderado (12). Lo cual significa que para poder registrar 12 especies en el área de estudio se han tenido que ejecutar por lo menos 84 unidades muestrales (Transectos y REV), lo que denota hábitats con refugios apropiados para que las especies aquí, puedan ocultarse y así hacer difícil su captura por parte de los evaluadores.

El detalle de este análisis se muestra graficado en la figura 3.4.2.3-1.

Figura 3.4.2.3-1. Curva de rarefacción para toda el área de estudio, línea roja representa la curva real y las líneas azules sus posibles límites máximos y mínimos.

Los índices de diversidad fueron calculados para las distintas épocas de muestreo, teniendo como criterio la estratificación por unidades de vegetación mencionada anteriormente. En la época húmeda, en donde se registraron además menos especies que en la época seca, se obtuvieron valores relativamente altos de diversidad, la unidad de vegetación para la que estos valores fueron más altos fue el BSPA en el que se obtuvieron 1.96 bits/ind para el índice de Shannon-Wiener (H'), esto debido al alto número de especies que se registraron aquí, probablemente el valor de diversidad pudo ser más alto pero en esta unidad de vegetación dos especies fueron claramente mas dominantes que le resto y fueron registrados claramente en mayor abundancia: la lagartija *Dicrodon guttulatum* "Cañán" y *Phyllodactylus microphyllus* "Jañape", esta desigualdad en las abundancias ocasionó que el valor de este índice no fuese más alto.

En la época seca fue también esta unidad de vegetación la que presentó los mayores valores para los índices de diversidad calculados, es necesario remarcar además, que es la única unidad de vegetación en donde fue posible registrar la totalidad de las especies encontradas en el área de estudio en ambas épocas, ciertamente, en la época húmeda fue aquí en donde se registraron las 12 especies de la actual lista del área, como consecuencia de esta alta riqueza y aunque también hubo una desigualdad en la equitatividad en cuanto a las abundancias de las especies aquí, los índices de diversidad resultaron ser los más altos de todo el estudio, los detalles de los índices de diversidad se muestran en los cuadros 3.4.2.3-4 y 3.4.2.3-5.

Cuadro 3.4.2.3-4. Índices de diversidad por unidades de vegetación durante la época húmeda.

	TAXA	UNIDAD DE VEGETACION				
Familia	Especie	BSPA	VHRR	VHPM		
	Dicrodon guttulatum	79	14	0		
TEIIDAE	Dicrodon heterolepis	6	0	0		
	Callopistes flavipunctatus	4	1	0		

	TAXA	UNIDAD DE VEGETACION			
Familia	Especie	BSPA	VHRR	VHPM	
TDODIDI IDIDAE	Microlophus occipitalis	10	10	0	
TROPIDURIDAE	Microlophuss thoracicus talarae	19	3	0	
GEKKONIDAE	Phyllodactylus microphyllus	30	15	0	
ELAPIDAE	Micrurus tschudii olssoni	1	0	0	
Núme	ro de Especies (S)	7	5	0	
Númer	o de Individuos (N)	149	43	0	
Índice de Simpson (1-D)		0.6552	0.7128	0	
Índice de	Shannon-Wiener (H´)	1.966	1.345	0	

Fuente: BISA, 2012

Cuadro 3.4.2.3-5. Índices de diversidad por unidades de vegetación durante la época seca.

	ia epoca s	eca.		
	TAXA	UNID	AD DE VEGETA	ACION
Familia	Especie	BSPA	VHRR	VHPM
	Dicrodon guttulatum	29	5	0
TEIIDAE	Dicrodon heterolepis	5	0	0
	Callopistes flavipunctatus	2	0	0
TROPIDURIDAE	Microlophus occipitalis	16	2	0
	Microlophus peruvianus	6	0	0
	Microlophuss thoracicus talarae	4	0	0
GEKKONIDAE	Phyllodactylus microphyllus	40	7	0
- · · · ·	Phyllodactylus kofordi	4	0	0
AMPHISBAENIDAE	Amphisbaena occidentalis	5	0	0
COLUBRIDAE	Alsophis elegans	1	0	0
VIPERIDAE	Bothrops barnetti	1	0	0

	TAXA	UNIDAD DE VEGETACION					
Familia	Especie	BSPA	BSPA VHRR				
ELAPIDAE	Micrurus tschudii olssoni	1	1 0				
Número	o de Especies (S)	12	3	0			
Número	de Individuos (N)	114	14	0			
Indice	de Simpson (1-D)	0.7829	0.602	0			
Indice de S	Shannon-Wiener (H´)	2.67	0.9923	0			

Fuente: BISA, 2012

Respecto a la utilización de hábitats, es necesario remarcar que en principio, la mayoría de especies son terrestres en el área de estudio, solo el gecko Phyllodactylus microphyllus utiliza las ramas de arbustos y algarrobos hasta los 3 m de altura, incluso la otra especie de gecko registrada en el área: Phyllodactylus kofordi, es terrestre y no sube hacia ningún otro estrato que no sea el suelo, en base a esto es que la estratificación pro hábitats se realizó de acuerdo a la vegetación en la que se ubicaron los refugios de las especies de reptiles aquí, por ende se tomaron en cuenta 4 hábitats (ya mencionados anteriormente): Algarrobal -Zapotal (AZ), Matorral espinoso (ME), Algarrobal en hondonadas o quebradas secas (AHQ) y Roquedal marino (RM). El hábitat que evidentemente fue el más utilizado fue el AZ, que fue además en donde se encontró la mayor cobertura arbórea y las zonas arbustivas más densas, este tipo de vegetación protege los refugios del suelo que hacen muchas de las especies de lagartijas del área y les otorga una protección ideal frente a predadores como zorros o aves rapaces. Además de esto, las serpientes, todas terrestres, encuentran refugio a nivel del suelo bajo la cobertura arbustiva y arbórea, aunque ellas no utilizan madrigueras (agujeros) para su refugio si algunas ramas (por ej. Alsophis elegans) o la materia orgánica dejada por arbustos y árboles (por ej. Micrurus tschudii olssoni y Bothrops barnetti), lo que les otorga refugio y además las coloca en el mismo estrato espacial que sus potenciales presas: las lagartijas del desierto de sechura, esto otorga condiciones ideales para que las necesidades del ciclo de vida de las

especies de este grupa sean satisfechas en este hábitat. El AHQ y el ME tienen una riqueza de reptiles muy similar (6 y 5 especies respectivamente), sin embargo, existen algunas diferencias, la lagartija, la más grande de la zona, Callopistes flavipunctatus, prefiere hacer madrigueras en zonas en donde el sustrato sea mas suave, por lo que el AHQ e ideal para esta especie, no siendo así el sustrato duro y rocoso del ME, así mismo la lagartija *Microlophus thoracicus* talarae solo fue registrada en el ME y no en el AHQ, sin embargo, de acuerdo a lo observado en el área de estudio, este registro no puede considerarse como determinante acerca del uso de hábitat de esta especie, pues ah estado registrada en la mayoría de hábitats del área de estudio, es probable que también pueda habitar el AHQ, sobretodo porque ha sido registrada en el AZ, que es otro hábitat influenciado por *Prosopis spp* como el AHQ, por lo que es probable su presencia en este hábitat. El RM, fue un hábitat en el que solo se registró una especie, la lagartija Microlophus peruvianus, este saurio de hábitos diurnos, tiene una dieta prácticamente marina (Pérez y Balta, 2005), eso causa que se acerque mucho a la zona litoral del área para consumir crustáceos y algas que son parte de su dieta, esto además ha hecho que se adapte muy bien a vivir en las agrupaciones de rocas que son bañadas por las olas del mar, y que no se aleje mucho de este hábitat, esta posiblemente, es la razón más fuerte por la que este hábitat solo tiene a esta especie habitándolo. El detalle del uso de hábitat por cada especie se muestra en la figura 3.4.2.3-2.

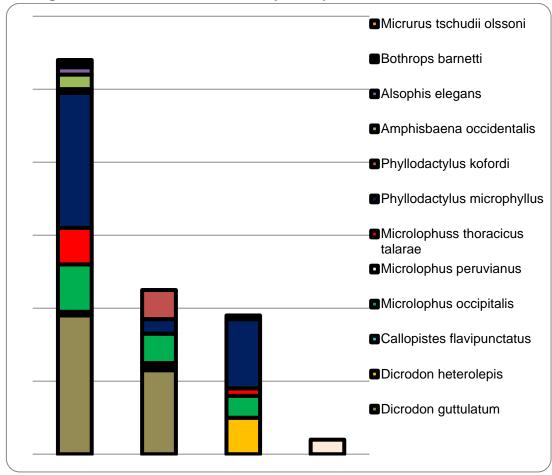


Figura 3.4.2.3-2. Uso de hábitat por especie en el área de estudio

Fuente: BISA, 2012

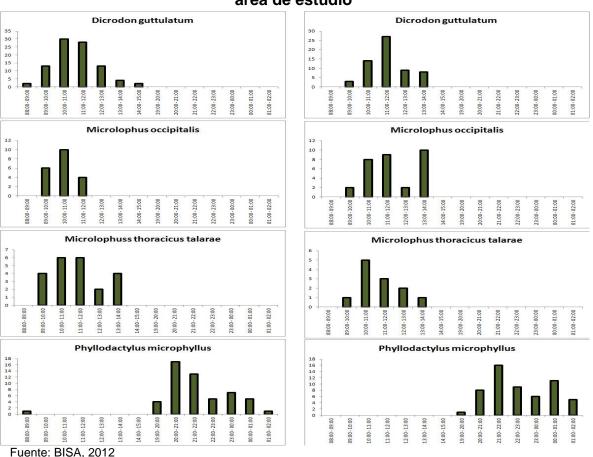
AZ=Algarrobal-Zapotal, AHQ=Algarrobal en Hondonada o Quebrada, ME=Matorral Espinoso, RM=Roquedal marino.

En base a estos resultados, se estructuró además un analisis de similaridad de Jaccard, entre las especies graficado en clusters, cotejando los registros de cada especie por habitat, de manera que se pueda predecir que especies son preferentemente simpátricas en el área de estudio, teniendo en cuenta que en los datos, se tienen abundancias importantes de individuos, se elaboró este análisis. De acuerdo a esto, hay dos tendencias claras en el área de estudio, los lagartos de la familia teiidae *Callopistes flavipunctatus* y *Dicrodon guttulatum*, han sido registrados simpátricos (tal como se corroboró en la fase de campo del proyecto) y tienden a serlo, cabe remarcar que ambos, viven en madrigueras bajo el suelo, y se les encontró preferentemetne en habitats con suelo arenoso, ambas son

diurnas y tienen además similares periodos de actividad (ver líneas abajo), la competencia entre ellos, a pesar de todas estas similitudes, no se da, pues debido a la difrencia clara de tamaños (C. flavipunctatus es un lagarto que puede llegar a medir mas de 1 m, mientras que *D.guttulatum* no sobre pasa los 50 cm) las presas que consumen tienden a ser distintas, por el contrario, se ha podido registrar que ocasionalmente C.flavipunctatus actúa como predador de D.guttulatum, lo que ademas clarifica, que el hecho de que sean simpátricos, no impide que puedan tener relaciones predador-presa. Otra tendencia importante que se puede apreciar en el grafico, es la simpatría de la lagartija Microlophus occipitalis con las dos especies de geckos registradas aquí: Phyllodactylus microphyllus y P. kofordi, es cierto (de acuerdo alo corroborado en la fase de campo) que habitan siitos similares, sin embargo sus nichos no se superponen, pues M. occipitalis es de habitos diurnos y las otras dos especies son nocturnas, esto signifivca que la competencia no se da entre esta especie y las nocturnas, sin embargo probablemente si se dé entre ambos geckos. *Microlophus thoracicus* talarae y Dicrodon heterolepis son dos lagartijas que no parecen tener afinidad para compartir su habitat con otras especies, sin embargo, es necesario remarcar que, por lomenos para el caso de *D.heterolepis*, sería necesario el registro de un mayor número de individuos para corroborar esta conjetura. Las serpientes Alsophis elegans, Bothrops barnetti y Micrurus tschudii olssoni, aunque parecen tener cierta afinidad para compartir el habitat según el gráfico, han sido registradas por no más de dos individuos, por lo que este punto no es fiable para estas especies, de hecho, debido a su posible rango de actividad grande y a su conocida preferencia por presas como lagartijas y pequeños roedores, es posible que puedan ser simpátricas con todas las espeices del área de estudio, y que ejerzan una relacion predador-presa con la mayoría de estas. Debido a su habitat litoral, y a su estrecha relacion con ambientes de acantilados y roquedales muy cercanos a ambientes marinos, la lagartija Microlophus peruvianus no parece tener relacion de habitat con ninguna otra de las espeices registradas en el área de estudio, esto sin embargo no sucede en otros ecosistemas costeros, en dodne esta lagartija puede habitar tmabien zonas arbustivas deserticas y alejarse de

habitats litorales, sin embargo, esto no sucede aquí, por lo que esta especie parece ser el unico reptil que habita este tipo de sistemas. Los detalles de este análisis se muestran en la figura 3.4.2.3-3.

0.90.80.70.60.50.40.30.1-


Figura 3.4.2.3-3. Grafico de clusters, para el analisis de Jaccard tomando en cuenta preferencias de habitats.

Fuente: BISA, 2012

Mtt=Microlophus thoracicus talarae, Cf=Callopistes flavipunctatus, Dg=Dicrodon guttulatum, Mo=Microlophus occipitalis, Pm=Phyllodactylus microphyllus, Pk=Phyllodactylus kofordi, Dh=Dicrodon heterolepis, Ao=Amphisbaena occidentalis, Ae=Alsophis elegans, Bb=Bothrops barnetti, Mto=Micrurus tschudii olssoni, Mp=Microlophus peruvianus.

La actividad de las especies del area, fue evaluada en ambas epocas, y a pesar de que fue evaluada en todas las especies, solo datos con un numero representativo de individuos por especie son otorgados en este informe, pues especies con solo pocos individuos registrados no otorgan un patrón común con el cual poder deducir conclusiones acerca de la actividad de los reptiles. Asi, se pudieron tomar datos de actividad de 4 especie de saurios en el área de estudio: Dicrodon guttulatum "Cañán", Microlophus occipitalis "Capón", Microlophus thoracicus talarae "Capón" y Phyllodactylus microphyllus "Jañape". Los resultados parecen ser bastante homógeneos en ambas épocas, aunque influenciados por la abundancia de las especies que en la epoca seca (que coincide con el invierno de este hemisferio) fue mucho menor que en la húmeda (ver figura 3.4.2.3-4).

Figura 3.4.2.3-4. Periodos de actividad de cuatro especies de lagartijas del área de estudio

Columna Izquierda: Epoca húmeda; Columna derecha: Epoca seca

De acuerdo a los resultados obtenidos, *Dicrodon guttulatum*, es una especie que parece ser mas activa hacia el mediodía, entre las 11 y 12 hrs, esto se repite en

ambas epocas, aunque con mayor incidencia en la época húmeda. Esto se da probablemente porque esta especie, de habitos terrestres y diurnos, ocupa madrigueras profundas por debajo del suelo, a las que la radiación solar llega tarde, y solo algunas de ellas, las más pequeñas (juveniles), debido a que tienen menos masa corporal y el calor puede invadirlas mas pronto, es posible verlas en actividad en hora más tempranas que el grueso de los adultos en una poblacion. La lagartija Microlophus occipitalis, es de tamaño más pequeño que D. guttulatum y no habita madrigueras profundas bajo el suelo, esto genera en consecuencia, que el calor de la radiacion solar pueda llegar más tempranamente a ellos, y pueda econtrárseles más activamente en horas más tempranas en un día, es bastante claro que esta especie empieza sus actividades más temprano que el D.guttulatum, sin embargo aun no es claro en que momentos tienen sus picos de actividad, pues debido a lo heterogéneo de los resultados en ambas épocas, no es posible determinar aún en que momento del día se da esto. La lagartija, de similar tamaño, Microlophus thoracicus talarae, inicia su periodo de actividad diaria en horario muy similar a *M.occipitalis*, es decir a las 9 horas, sin embargo, en esta especie parece haber un pico de actividad entre las 11 y 12 del mediodía y va progresivamente, disminuyendo su actividad hacia las horas de la tarde, esto podria considerarse un patrón de la especie, pues se repitió en ambas evaluaciones. La otra especie que pudo ser evaluada, fue el gecko nocturno Phyllodactylus microphyllus, esta lagartija, de habitos nocturnos, parece regular su termorregulacion con el calor adquirido durante el día por la madriguera (usualmente bajo la arena o bajo troncos) que habita, y es de este calor que puede tener la energía para las actividades nocturnas que realiza, aunque los resultados parecen ser muy heterogéneos en ambas épocas, la mayor actividad registrada para esta especie se dio entre las 20 y 22 horas, en que se les registró activamente, este es un resultado similar a los estudios de otras especies de este mismo género, que tienen sus picos de actividad entre las 20 y 23 hrs (Pérez y Balta, 2005).

3.4.2.3.6 Conclusiones

El éxito de captura en la presente evaluación resultó en un valor aparentemente no lejano al riqueza real del área de estudio, como lo demuestra el análisis de rarefacción realizado, aunque de hecho, con este cálculo no se determina el número de especies real en un sitio, es un valor indicativo de lo que se podría registrar, y en la presente evaluación, aparentemente, debido a la asíntota mostrada en el gráfico de rarefacción, que parece tener una tendencia a estabilizarse hacia le final de la misma, cierto es, que se ha necesitado un esfuerzo de muestreo importante para legar a ella, con más de 150 unidades de muestreo.

De las 12 especies registradas (todas reptiles), fue la lagartija *Dicrodon guttulatum* la más abundante del área de estudio para cualquier época, aunque esta abundancia se registro en la época húmeda, para la época seca fue el gecko *Phyllodactylus microphyllus* aunque con una menor abundancia, algunas especies como la serpientes *Alsophis elegans*, *Bothrops barnetti y Micrurus tschudii olssoni* fueron registradas solo por un individuo. El resto de especies fueron registradas moderadamente, algunas con valores altos de abundancia, otras con valores relativamente bajos, pero ninguna alcanzo los valores de las especies mencionadas.

Los análisis de diversidad, demuestran que el BSPA es la unidad de vegetación que ofrece la mayor diversidad en el área de estudio en ambas épocas, es también la unidad de vegetación que mejor representada está en el área de estudio. Estos resultados altos de diversidad se dan debido a que en ambas evaluaciones la mayor cantidad de especies fue registrada aquí, en ambas épocas, así mismo, la abundancia de cada una de ellas fue relativamente equilibrada, con algunas excepciones, por ejemplo, en la época humeda fue la lagartija *Dicrodon guttulatum* la más abundante aquí mientras que en la época seca fue el gecko Phyllodactylus microphyllus, en el caso de D.guttulatum, la

diferencia de abundancias respecto del resto de especies fue grande (más de 40 individuos de diferencia), en el caso de *P.microphyllus*, la diferencia con la segunda especie más abundante (*D.guttulatum*) no fue grande, solo 10 individuos, pero respecto al resto de especies, si fue superior a los 20 individuos, de no ser por estas diferencias, el resultado de los índices de diversidad pudiera haber sido aún mayor.

Los de ecología de las especies registradas ofrecen importantes datos acerca de las asociaciones y relaciones dentro de la comunidad de herpetofauna en el área de estudio. Primeramente, por lo menos la mitad de las especies registradas se distribuye en toda el área de estudio, y aunque en un análisis a priori no pueda lucir como tal, habría ciertas preferencias de hábitats de acuerdo a la especie a analizar. La mayoría de especies tienden a utilizar los hábitats que den refugio, como es lógico, estos se registraron mayoritariamente en el AZ. Solo unas pocas mostraron una gran adaptabilidad para ocupar hábitats distintos a estos, por ejemplo, Dicrodon guttulatum y Microlophus occipitalis de día, y Phyllodactylus microphyllus de noche, ocuparon también hábitats como el AHQ y el ME, cosa que no ocurrió con el resto de especies que solo fueron registradas en 2 o menos hábitats, como Callopistes flavipunctatus que solo ocupo el AZ y el AHQ, la textura dura del suelo de ME parece nos er de las preferencias de esta lagartija que hace madrigueras bajo el suelo y para esto tiene que escavar a profundidades de entre 2 y 3 m. Esto además, ayudó a que se realizará un análisis de compatibilidad por uso de hábitat, para determinar posible simpatrías que ayuden a tomar decisiones al proyecto, en el caso de que se analice la herpetofauna de cierto lugar y se desee predecir que se puede registrar, así, se pudo conocer que, las lagartijas D.guttulatum, Callopistes flavipunctatus, Microlophus occipitalis, Phyllodactylus microphylus y Phyllodactylus kofordi, son potencialmente simpátricas y de hecho hay una mayor porbabilidad de que comparan el hábitat, que con las demás, pues muestra mucha adaptabilidad y tolerancia a la presencia de ellas, en menor medida mostraron esta afinidad Microlophus thoracicus talarae con Microlophus occipitalis y Phyllodactylus

microphyllus y Dicrodon heterolepis con Phyllodactylus kofordi, las especies que no muestran una tolerancia suficiente para ser simpátricas con el resto son las serpientes que en el grafio de clusters aparecen con una tendencia a ser simpátricas, sin embargo la cantidad de datos es insuficiente para poder afirmar esto, de hecho, es muy probable que no lo sean, sino que por el contrario, de manera ocasional podrían coincidir en algún punto del área de estudio pero sin ser esa una constante. La única especie que claramente no comparte el hábitat con ninguna otra, pues utiliza el RM, es la lagartija Microlophus peruvianus, que debido a sus preferencias por hábitats litorales parece ser el único reptil que pueda ocurrir en este tipo de zonas. El caso de la lagartija (la más grande del área de estudio) Callopistes flavipunctatus es particular, porque aunque el gráfico de clusters muestra afinidad con otras especies, ciertamente ha sido observada co habitando con varias otras lagartijas, pero en relación predador-presa, tomando el rol de predador, esta especie, la que además se encontraría en la cúspide de la pirámide trófica de los reptiles en el área de estudio. Así mismo, de acuerdo a los patrones de actividad de cada una de las especies registradas, el de C.flavipunctatus coincide con las especies que son sus presas habituales según lo observado: D.guttulatum y M. thoracicus talarae, las que además son las especies diurnas que mayor tiempo en alta actividad pasan durante un día (2 hrs), como consecuencia de eso, parte de ese tiempo lo pasan con el riesgo de ser predadas por C.flavipunctatus que tiene su pico de horas de actividad hacia el final de los picos de actividad de estas otras dos lagartijas, por lo que su relación predadorpresa además tendría que ver con la disponibilidad de recursos también, es decir, la presencia masiva de esta dos especies a esas horas. Otro es el caso para los geckos Phyllodactylus microphyllus y Phyllodactylus kofordi y la serpiente de coral Micrurus tschudii olssoni, que son evidentemente nocturnos y casi no comparten horarios de actividad con otras especies.

Las especies importantes del área de estudio fueron categorizadas de acuerdo a las listas de especies amenazadas de IUCN, CITES y D.S. 034-2004-AG: la lagartija *Dicrodon heterolepis*, la lagartija *Callopistes flavipunctatus* y la lagartija

Microlophus peruvianus estuvieron en la listas de amenaza, aunque ninguna se encuentra en alguna categoría de peligro mayor, si es necesario acotar que C.flavipunctatus se encuentra en estado Vulnerable bajo el D.S. 034-2004-AG debido a la presión que sufre por caza y perdida de hábitat, además de su rango de distribución restringido a la costa norte de Perú.

3.4.2.3.7 Bibliografía

- Brack, A. 1986. Las ecorregiones del Perú. Bol. Lima 44: 57-70.
- Catenazzi A. & M. Donnelly. 2007. Distribution of geckos in northen Peru: Long-term effect of strong ENSO events? Journal of Arid Environments 71:327-332.
- Dixon, J. R. 1989. A key and checklist to the neotropical snakes of the genus Liophis with country list and maps. Smith. Herp. Inf. Serv. 79.
- Dixon, J. R. and R. B. Huey. 1970. Systematic of the lizards of the gekkonid genus Phyllodactylus of mainland South America. Cont. Sci. 192: 1-77.
- Dixon, J. R. and J. W. Wright. 1975. A review of the lizards of the Iguanid genus Tropidurus in Peru. Cont. Sci. 271: 1-39.
- Heyer R., Donnely M. and Foster, M. 1994. Methods for Measuring and Monitoring Amphibians. Smithsonian Press. New York.
- Huey, R. B. 1979. Parapatry and niche complementarity of Peruvian desert gekos (Phyllodactylus): The ambiguious role of competition. Oecologia 38: 249-259.
- Schmidt, K. P. & W. F. Walker. 1943. Snakes of the Peruvians coastal region. Field Mus. Nat. Hist. Pulb. Zool. Ser. 24(27): 297-324.
- Schmidt, K. P. 1957. Note of the genus Dicrodon. Nat. Hist. Mus. Chicago 39(9): 65-71.
- Venegas, P.J. 2005. Herpetofauna del Bosque Seco Ecuatorial de Perú:
 Taxonomía, Ecología y Biogeografía. Zonas Áridas (9): 9-21.

3.4.2.4 Fauna - Mamíferos

3.4.2.4.1 Introducción

El bosque seco ecuatorial se desarrolla en un ambiente de condiciones climáticas antagónicas con una geografía homogénea. Los mamíferos que viven en estas zonas se encuentran biológicamente adaptados al suelo arenoso y con muy poca materia orgánica, a la sequedad, poca vegetación, y sobre todo al calor.

El componente biológico de mamíferos representa un grupo taxonómico indicador de calidad de los ecosistemas, ya que por su biodiversidad pueden distribuirse en diversos hábitats; la presencia de estos organismos indica un equilibrio natural en la zona.

Este informe describe detalladamente el estudio de la mastofauna en los alrededores del estuario de Virrilá, provincia de Sechura, departamento de Piura.

La bitácora de la evaluación contiene los eventos sucedidos durante los periodos de época seca y época húmeda. Se describe también el área de estudio, directamente relacionada a los diversos organismos registrados. Para el estudio de mamíferos mayores y menores se utilizó la metodología de transectos diurnos y nocturnos, tomando en cuenta los hábitos naturales de estos organismos.

Entre los resultados, se logró identificar una especie de roedor, y tres especies de carnívoro. Ninguna especie registrada en el presente estudio se encuentra incluida en la lista de categorización nacional (Decreto Supremo 034-2004-AG), y una sola especie registrada se encuentra dentro de la Lista Internacional del CITES (Apéndice II).

3.4.2.4.2 Objetivos

- Evaluar cualitativa y cuantitativamente el componente de mastozoología, de una manera representativa dentro del área de estudio, generando datos básicos antes del inicio de las actividades del proyecto Fosfatos en el área antes descrita.
- Contribuir a la identificación y descripción de los potenciales impactos que las actividades realizadas en el área del proyecto generarían sobre los grupos taxonómicos evaluados en el presente estudio.
- Determinar la composición de especies de mamíferos (riqueza, abundancia y diversidad), según el tipo de unidad de vegetación.

3.4.2.4.3 Puntos de evaluación

Cuadro 3.4.2.4-1. Puntos de muestreo durante la evaluación de mamíferos

Sector de Muestreo	Punto de Muestreo	Número de Transectos
S.E. La Niña	M1, M2	4
Poza lodos residuales, 8 km al este tajo abierto	M3, M4	4
Poza de evaporación	M6	2
Pto. Vale, Pto. Rico	M7, M8	4

Fuente: BISA Trabajo de campo

Se realizó un total de 01 día de trabajo efectivo por punto de muestreo, con un total de siete (7) puntos de muestreo, repartidos entre los 4 sectores (para cada temporada). En cada sector se realizó una evaluación cuantitativa diurna y nocturna. En el plano **830MA0001A-010-20-026** se identifican las zonas de muestreo para el componente mastozoología.

3.4.2.4.4 Metodología

Criterios considerados

Los criterios tomados en cuenta para estimar la intensidad de muestreo fueron: distancia de nodos entre transecto y transecto; lugares de tránsito probable de mamíferos, como recodos de dunas o matorrales; también se tomó en cuenta la dificultad que representó evaluar las trochas cercanas a caminos de herradura. Particularmente se debió modificar la intensidad de muestreo y realizar un muestreo cualitativo y/o cuantitativo dependiendo de condiciones de factibilidad en el ingreso al lugar de evaluación y por temas de seguridad del personal.

Los criterios considerados para determinar la ubicación de los transectos en campo fueron: la biología de los organismos evaluados, el permiso de evaluación en los puntos de muestreo y condiciones geográficas de mayor factibilidad para evaluar, puesto que una parte de rutas se encontraba parcialmente inaccesible.

- Descripción del área de estudio

El área de estudio comprende la evaluación de los alrededores del estuario de Virrilá y parte de la franja costera, ubicado al sur de la ciudad de Sechura, en el departamento de Piura. Gran parte de los hábitats encontrados corresponden a zonas semidesérticas, como Bosques secos y vegetación halófila asociada al estuario, con amplias zonas arenosas con esparcidos parches de vegetación a lo largo del territorio. En la mayoría de casos, el bosque seco presentó un aspecto medianamente perturbado por actividades antropogénicas, evidenciando numerosos caminos de herradura hechos por el tránsito humano, e incluso presencia de algunas zonas de pastoreo de ganado caprino.

Los transectos fueron ubicados teniendo en cuenta la unidad fisiográfica a muestrear y la accesibilidad a los mismos. Para mamíferos la elección de los lugares para la instalación de los transectos se realizó de manera subjetiva,

buscando que las áreas seleccionadas sean lo más representativas del hábitat a evaluar.

Cuadro 3.4.2.4-2. Unidades de vegetación evaluadas en cada sector

Sector	Punto de Muestreo	Unidad de Vegetación	Cód-veg						
S.E. La Niña	M1, M2	Bosque seco con predominio de algarrobo	BSPA						
Poza lodos residuales, 8 km al este tajo abierto	M3, M4	Bosque seco con predominio de algarrobo	BSPA						
Poza de evaporación	M6	Bosque seco con predominio de algarrobo	BSPA						
Pto. Vale	M7	Bosque seco con predominio de sapote,	BSPS						
Pto. Rico	M8	Vegetación Halófila de playa marina	VHPM						

Fuente: BISA Trabajo de campo

- Descripción de los puntos de muestreo

En el siguiente cuadro se presenta la descripción de todos los puntos de muestreo biológico para mamíferos menores por cada punto de muestreo.

Cuadro 3.4.2.4-3. Descripción de los puntos evaluados en temporada húmeda y seca

Unidad de Vegetación	Sector	Punto de Muestreo	Época	Zona	Coorder Iniciales		Coorde Finales	Alt.				
					Este	Norte	Este	Norte				
BSPA	S.E. La Niña	M1	Húmeda	Zona muy	551351	9344748	549342	9344288	17			
DOI A	J.L. La IVIIIa	IVII	Seca	impactada	551374	9344854	550013	9346320	9			
BSPA	S.E. La Niña	M2	Húmeda	Zona muy	550566	9344612	548747	9345345	14			
DOPA	S.E. La Niña	IVI∠	Seca	impactada	550612	9344600	550700	9345390	16			
DODA	Poza de lodos residuales		MO	Húmeda	Zona	521380	9342870	519845	9341631	53		
BSPA		M3	Seca	medianamente impactada	519826	9342812	521188	9340764	39			
DODA	8 km al este del tajo abierto	N44	Húmeda	Zona	527956	9339935	528052	9337952	32			
BSPA		M4	Seca	medianamente impactada	528052	9337922	529685	9339184	35			
BSPA	Poza de	M6	Húmeda	Zona	515000	9347500	516020	9348400	21			
BSPA	evaporación	IVIO	Seca	medianamente impactada	515056	9347582	515339	9349580	19			
DODO	Dta Vala	N 4-7	Húmeda	Zona muy	495000	9366505	495485	9366481	17			
BSPS	Pto. Vale	M7		impactada	492560	9360448	493311	9360026	20			
\/LIDM	Dta Diag	MO	Húmeda	Zona muy	495627	9366470	496324	9366420	5			
VHPM	Pto. Kico	Pto. Rico	Pto. Rico	Pto. Rico	M8	Seca	impactada	495622	9366475	496326	9366425	4

Fuente: BISA Trabajo de campo

Mamíferos menores

Para la evaluación de mamíferos pequeños (terrestres o no voladores: marsupiales y roedores), se utilizó el método de transecto, complementando con avistamientos ocasionales y entrevistas.

Cada individuo registrado fue identificado hasta el nivel de género, registrando los datos del lugar de muestreo, número de estación y tipo de trampa. No se colectaron ejemplares, sólo se registraron los avistamientos con los datos respectivos (hábitat de registro y fotografías); fueron capturados los especímenes de difícil identificación para luego ser liberados.

Mamíferos mayores

Se utilizaron dos técnicas de muestreo: censos por transectos lineal (Aquino *et al.* 2001; Haugaasen & Péres, 2005) y entrevistas. La primera, consistió en evaluar 1 transecto por punto de muestreo, lo que hizo un total de 4 transectos (entre cuantitativos y cualitativos) evaluados entre ambos sectores (B7 y B8). La longitud de los transectos variaron de 0.5 a 1.0 km como máximo. Los transectos fueron recorridos en horario diurno (8:00-16:00) con el fin de registrar evidencias directas (observaciones) e indirectas (huellas, vocalizaciones, heces, madrigueras, excavaciones, bañaderos, rasguños, cadáveres, frotaciones, entre otros). Cada vez que se registraba una evidencia se procedió anotar datos como: especie, tipo de registro, coordenadas UTM, número de individuos (en evidencias directas) y altura aproximada en la trocha. La segunda, consistió en realizar entrevistas a los apoyos comunitarios, a quienes se les preguntó acerca del uso que les dan a los mamíferos. Se entrevistaron un total de dos personas de las comunidades cercanas al estuario Virrilá. Para facilitar la identificación de los mamíferos se les mostró las ilustraciones de Mamíferos del Ecuador de Tirira (2007).

3.4.2.4.5 Análisis de datos

Mamíferos menores

Los individuos registrados fueron determinados hasta el nivel de género, registrando los datos del lugar de muestreo y temperie. Adicionalmente en los individuos capturados, se tomaron las medidas estándar, peso, sexo, edad y condición reproductiva del espécimen colectado, luego se procedió a liberarlos, registrándose previamente con fotografías. Los registros por entrevista fueron determinados hasta nivel de género, sustentando también dicha información con la bibliografía correspondiente.

Para comparar la diversidad entre las localidades y las unidades de vegetación muestreadas se utilizó los índices de diversidad de Shannon-Wiener y de Simpson. Los índices de diversidad permiten relacionar el número de especies y el número de individuos por especie. En estos índices, los valores más altos corresponden a una gran riqueza de especies (número de especies) y heterogeneidad (distribución del número de individuos de cada especie).

La fórmula del índice de Shannon-Wiener (*H*') utilizada fue la siguiente (Krebs 1999):

$$H' = -\sum_{i=1}^{s} p_i \log_2 p_i$$

Donde, p_i = proporción de individuos de la especie i (# individuos de la especie i/# total de individuos).

La fórmula del índice de diversidad de Simpson (1-D) utilizada fue la siguiente (Krebs 1999):

$$1 - D = 1 - \sum_{i=1}^{s} (p_i)^2$$

Donde, p_i = proporción de individuos de la especie i (# individuos de la especie i / # total de individuos)

- Mamíferos mayores

Las evidencias indirectas (huellas) fueron identificadas con la ayuda de las guías de campo de rastros de Mamíferos del Ecuador de Tirira (2007), en tanto que las especies registradas a través de evidencias directas (observaciones) fueron identificadas también utilizando la guía de campos de Mamíferos del Ecuador de Tirira (2007).

Para estimar la abundancia de los mamíferos medianos y grandes se utilizó el índice propuesto por Boddicker *et al.* (2002). Este método asigna un valor numérico a cada evidencia (directas e indirectas), el cual es multiplicado por el número de veces en que se registró cada evidencia. Se considera abundante a aquellas especies que alcancen un índice mayor o igual que 30.

La información proporcionada por las entrevistas son relevantes para estudios de corta duración, así tenemos que en base a las entrevistas podemos obtener datos como: distribución, uso y abundancia cualitativa de especies de mamíferos en una zona determinada.

La diversidad fue medida utilizando el índice de diversidad de Shannon-Wiener (H´) y el de dominancia de Simpson (1-D).

3.4.2.4.6 Resultados (Temporadas seca y húmeda)

En las zonas de estudio se ha registrado un total de cuatro (04) especies: tres (03) especies de mamíferos mayores y una especie de mamíferos menores.

3.4.2.4.6.1 Evaluación de mamíferos menores

Riqueza.

De acuerdo a las unidades de vegetación, tenemos que el Bosque Seco con Predominancia de Algarrobos (BSPA) es la única formación vegetal que evidencia la presencia de 01 sola especie (*Phyllotis gerbillus*) perteneciente a la familia Cricetidae y al Orden Rodentia.

En las demás zonas evaluadas no se obtuvieron registros de especies de mamíferos menores.

Abundancia.

De acuerdo a las unidades de vegetación, se hace evidente el bajo número de registros en el BSPA (02 individuos registrados).

Diversidad.

Los índices calculados de acuerdo a la abundancia de la especie encontrada es igual a cero, puesto que sólo se registró una sola especie de mamífero menor entre ambas épocas de evaluación, la cual es obviamente la dominante en una sola formación vegetal.

Cuadro 3.4.2.4-4. Registro de especies de Mamíferos Menores e Índices de diversidad por formación vegetal

			Nombre Común		N				
Orden	Familia	Especie			BSPA	VHRR	BSPS	VHPM	Total
Rodentia	Cricetidae	Phyllotis sp	Gerbillo		2	-	-	-	2
	Nú	mero de Especie	s (S)		1	-	-	-	1
	Nún	nero de Individuo	s (N)		2	-	-	-	2
	H' (Índice	e de Shannon-Wie	ener)						0
	1-1	D (Índice de Simp						0	

Fuente: BISA, 2012.

Cuadro 3.4.2.4-5. Lista de especies de mamíferos y características ecológicas

				lábito	s	Fre	cuen	cia	Grupo Trófico				
Orden	Familia	Especie	Volador	Terrestre	Arbóreo	Frecuente	Poco Común	Raro	Omnívoros	Nectivoros	Herbívoros	Frugívoros	Insectívoro
Rodentia	Cricetidae	Phyllotis sp		х		х					х	х	х

Fuente: BISA, 2012.

3.4.2.4.6.2 Evaluación de mamíferos mayores

Riqueza.

Se registró un total de 03 especies pertenecientes a tres familias y un orden.

De acuerdo a las unidades de vegetación, en el BSPA se registró por medio de evaluación de transectos un total de 02 especies de mamíferos mayores (*Pseudalopex sechurae* "Zorro costeño" y *Conepatus chinga* "Zorrino"), pertenecientes a 02 familias y 01 orden (familias Canidae y Mephitidae, respectivamente). En el BSPS también se registraron estas mismas especies.

En la VHRR se logró registrar una sola especie (*P.* sechurae) perteneciente a la familia Canidae, del orden Carnívora. Finalmente en la zona de VHPM se registró una sola especie de mamífero marino (*Otaria flavescens* "Lobo marino chusco") perteneciente a la familia Otaridae, del orden Carnívora. Por medio de encuestas a los apoyos locales se confirmó la presencia de estas especies registradas.

Abundancia.

Se obtuvo un total de 44 registros de mamíferos mayores. De acuerdo a las unidades de vegetación, tenemos que el Bosque Seco con Predominancia de Algarrobos (BSPA) presenta el mayor número de registros, con 17 registros pertenecientes a la especie *Pseudalopex sechurae* "Zorro costeño", y 07 registros pertenecientes a la especie *Conepatus chinga* "Zorrino.

De igual manera para el Bosque Seco con Predominancia de Sapote (BSPS), se obtuvo 09 registros de *P. sechurae* "Zorro andino", y 03 registros de *C. chinga* "Zorrino".

La formación de Vegetación Halófila de Ribera de Río, presentó 05 registros de una sola especie: *P. sechurae*.

Finalmente, la formación VHPM presentó un total de 03 registros pertenecientes a la especie *Otaria flavescens* "Lobo marino Chusco".

Diversidad.

Los índices obtenidos en referencia a la abundancia de especies registrada en toda el área de estudio son pobremente representativos en cuanto a riqueza; sin embargo, es moderadamente heterogéneo en cuanto a distribución de las especies registradas en relación al área total de estudio.

De acuerdo a las unidades de vegetación, se observa que el BSPA presenta los índices de diversidad más altos, seguido del BSPS (ver cuadro 3.4.2.4-6).

Cuadro 3.4.2.4-6. Registro de especies de Mamíferos Mayores e Índices de diversidad por Formación Vegetal

					Formación Vegetal					
Orden	Familia	Especie	Nombre Común	BSPA	BSPS	VHRR	NHN	Total		
	Canidae	Pseudalopex sechurae	Zorro costeño	17	9	5	-	31		
Carnivora	Mephitidae	Conepatus chinga	Zorrino hocico de cerdo	7	3	-	-	10		
	Otaridae	Otaria flavescens	Lobo marino chusco	-	-	-	3	3		
Número de	Especies (S	5)		2	2	1	1	3		
Número To	otal de Indivi	duos (N)		24	12	5	3	44		
H' (Índice d	de Shannon-	Wiever)		0.6	0.56	0	0	0.76		
1-D (Índice	de Simpsor	n)		0.41	0.37	0	0	0.44		

Fuente: BISA, 2012.

Cuadro 3.4.2.4-7. Lista de especies de mamíferos mayores y características ecológicas

	Regis	stros		Tipo de registro						Hábito		0	Frecuencia		icia	Hábitos alimenticios				os							
Orden	Familia	Especie	Nombre Común	Encuesta	Heces	Huellas	Osamenta	Comederos	Madrigueras	Bañadero	Pelos	Excavación	Frotación	Rasguños	Observación	Terrestre	Acuático	Arbóreo	Común	Poco común	Raro	Omnívoro	Herbívoro	Frugívoro	Insectívoro	Carnívoro	Folívoro
	Mephitidae	Conepatus chinga	Zorrino	Х					х							х			х					х	х	Х	
Carnivora	Canidae	Pseudalopex sechurae	Zorro		х	х				х		х				х			х					х	х	х	
	Otaridae	Otaria flavescens	Lobo marino				х									х	х		х							х	

Fuente: BISA, 2012.

3.4.2.4.6.3 Especies de uso local

Ninguna de las especies registradas son usadas por las poblaciones locales; sin embargo, algunas de las especies registradas son consideradas perjudiciales por la población local, como son las especies: *Pseudalopex sechurae y Otaria flavescens.*

3.4.2.4.6.4 Síntesis Biológica

Los mamíferos son medianamente diversos y moderadamente abundantes en las zonas desérticas, debido a sus hábitos activos tanto de día como de noche; se encuentran en cantidad y diversidad moderada debido a condiciones como mayor temperatura en el día y menor humedad. Representan también un grupo de mucho interés debido a que cualquier cambio en su entorno, tanto en sus presas como en su hábitat influirá en su biología pudiendo afectar a poblaciones enteras por el desequilibrio trófico ocasionado, amenazando la continuidad de estas formas de vida y de otras ligadas a ésta.

3.4.2.4.7 Conclusiones

- Se registró un total de cuatro (04) especies de mamíferos, pertenecientes a cuatro (04) familias y a dos (02) órdenes taxonómicos.
- Respecto a la riqueza, el máximo número de especies fue registrado en el BSPA (03 especies): Phyllotis gerbillus, Pseudalopex sechurae y Conepatus chinga.
- Se registró una (01) sola especie categorizada en la Lista de Conservación del CITES (Apéndice II): Otaria flavescens (Otaridae) "Lobo marino chusco".
- En general, el área de estudio presenta un considerable impacto antrópico a lo largo de toda la zona. Esto se debe principalmente a la actividad ganadera y de exploración minera que viene realizándose desde hace

varias décadas. Sin embargo, la mayoría de especies indicadoras de fauna que se esperaría encontrar en hábitats considerados en equilibrio se pueden apreciar aún en las inmediaciones de dicha zona. Esto se podría explicar por la gran capacidad de adaptación que pueden presentar estos organismos frente a las actividades humanas, dando como resultado su coexistencia con la presencia humana y sus actividades.

3.4.2.4.8 Bibliografía

- Eisenberg, J. F., & K. H. Redford. 1999. Mammals of the Inotropic. Volume 3.
 The Central Inotropic: Ecuador, Peru, Bolivia, Brazil. University of Chicago Press, Chicago.
- Boddicker, M.; Rodríguez, J. Y J. Amanzo.2002. *Indices for assessment and monitoring of large mammals within an adaptive management framework*. Kluwer Academic Publishers.
- Aquino, R; Bodmer, R. & Gil, G. 2001. Mamíferos de la cuenca del río Samiria: ecología poblacional y sustentabilidad de la caza. Junglevagt for Amazonas, AIF-WWF/DK, WCS. Lima, Perú. 108 pp.
- Emmons, L. & F. Feer. 1997. Neotropical Rainforest Mammals. A Field Guide. The University Chicago Press. 281pp.
- Eisenberg J. F y R. W, Thorington. 1973. *A preliminary analysis of a Neotropical mammal fauna*. En: Biotropica 5:150-161.
- Eisenberg J. F y R. W, Thorington. 1973. A preliminary analysis of a Neotropical mammal
- INRENA, 2006. Categorización de especies amenazadas de fauna silvestre.
 Publicación en el diario oficial el Peruano (D. S. 034-2004-AG). Año XXI Nº 8859, pp. 276854 276857.
- IUCN. 2006. Red list of threatened species. *The IUCN species survival commission*. IUCN. The World Conservation Union. Gland.
- Krebs, C. 1999. Ecological Methodology Second Edition. University of British Columbia. USA. 520 pp.

- Robinowitz A. 2003. *Manual de capacitación para la investigación de campo y la conservación de la vida silvestre*. 1era Edición. Wildlife Conservation Society. New York, EE.UU. 196 págs.
- Simmons, N. B. & R. S. Voss. 1998. The mammals of Paracou, French Guiana: A neotropical lowland rainforest fauna Part 1: bats. Bulletin of the American Museum of Natural History 237: 1--219.
- Tirira, D. 1999. Mamíferos del Ecuador. Pontificia Universidad Católica del Ecuador y Sociedad para la Investigación y Monitoreo de la Biodiversidad Ecuatoriana. Publicación Especial 2. Quito.
- Voss, R. S. & L. H. Emmons. 1996. Mammalian Diversity in Neotropical Lowland Rainforests: A Preliminary Assessment. Bulletin of the American Museum of Natural History 230: 1-115.
- Voss, R. S., D. P. Lunde & N. B. Simmons. 2001. The mammals of Paracou, French Guiana: a neotropical lowland rainforest fauna Part 2. Non volant species. Bulletin of the American Museum of Natural History 263: 1--236.
- Wilson, D. E., F. R. Cole, J. D. Nichols, R. Rudran, & M. S. Foster (eds.).
 1996. Measuring and monitoring biological diversity. Standard methods for mammals. Smithsonian Institution Press, Washington, D.C., 409 pp.
- Wilson, D. E. & D. M. Reeder (Eds.). 2005. Mammal Species of the World, Tercera Edición. Johns Hopkins University Press.

3.4.3 Ecosistema Acuático

3.4.3.1 Ecosistema Acuático Virrilá

3.4.3.1.1 Introducción

El estuario de Virrilá se encuentra ubicado al sur de la provincia de Sechura-Piura. El estuario se formó en la antigua desembocadura del río Piura, que permitió la entrada del agua de mar y que recibe aportes ocasionales de agua dulce de un ramal del río Piura y de aguas subterráneas adquiriendo un carácter salobre. Su gradiente horizontal de salinidad y sus aguas poco profundas con sustrato fangoso favorecen el desarrollo de una diversidad especies pertenecientes al plancton, bentos peces y que se han adaptado a las características de este tipo de ambiente y que permiten a su vez la presencia de otros grupos superiores como las aves acuáticas, tanto residentes como las migratorias del hemisferio norte que tienen a Virrilá como un importante lugar de alimentación y de reposo. En Virrilá se han llegado a reportar más 30 000 individuos entre especies residentes y migratorias, siendo por ello declarada por BirdLife International como un Área de Importancia para la conservación de Aves (IBA).

Durante los años los Eventos El Niño se forma en la depresión de Bayóvar, la laguna de La Niña. Esta laguna se forma por el desborde de las aguas de ríos como Motupe, La Leche, Piura, entre otros. Durante la evaluación la laguna de La Niña se encontraba unida al estuario.

El presente capítulo Ecosistema Acuático de Virrilá es parte de los Estudios de Impacto Ambiental del proyecto Fosfatos. El área de estudio fue el estuario de Virrilá. Las evaluaciones llevadas a cabo en los meses de abril y julio comprendieron los estudios de las comunidades hidrobiológicas: plancton, bentos y peces.

Se realizó estudios de la calidad de agua el cual comprendió los parámetros fisicoquímicos in situ y los analizados en laboratorio. Comprendiendo la presencia de metales pesados en el agua. Además se realizó el estudio de sedimentos que comprendió análisis textural de los suelos y determinación de metales pesados.

3.4.3.1.2 Objetivos

 Describir las características de las comunidades hidrobiológicas del estuario de Virrilá: (plancton, bentos y necton (peces).

3.4.3.1.3 Área de Estudio

El estuario de Virrilá está ubicado en el distrito y provincia de Sechura región Piura. En la desembocadura del estuario se encuentra la caleta pesquera de Parachique. Además existe un puente que cruza el estuario en dirección a Bayóvar. El estuario durante la evaluación se encontró unido a la laguna de La Niña. El plano 830MA0001A-010-20-019 muestra las estaciones de muestreo en el estuario.

Cuadro 3.4.3-1: Ubicación de las estaciones de muestreo en el estuario de Virrilá

Estación	Datum	WGS 84	Altitud	Descripción
LStacion	UTM Este	UTM Norte	(msnm)	Descripcion
VI-01	9 361 537	514 775	0	Desembocadura del estuario de Virrilá, en Parachique
VI-02	9 354 500	516 582	1	Ubicada cerca al puente Virrilá, en la parte media del estuario.
VI-03	9 351 088	529 045	1	Ubicada en la unión del estuario con la Laguna La Niña

3.4.3.1.4 Metodología

a) Comunidades Hidrobiológicas

a.1) Plancton.

El plancton, está conformado por organismos microscópicos vegetales y animales que viven suspendidos en la columna de agua

La colecta se realizó filtrando 50 litros de agua mediante el uso de una red estándar de plancton (malla de 50 micras), que atrapa los organismos microscópicos en la red. La fijación fue directa, con formalina al 4% para evitar el deterioro de las muestras. Las muestras fueron colocadas en frascos plásticos, etiquetados y rotulados para su traslado al laboratorio Inspectorate Services SAC para su identificación taxonómica.

a.2) Bentos

El bentos es una comunidad acuática que se encuentra asociada al fondo ya sea sobre el sustrato (epifauna) o dentro (infauna). Son organismos de tamaño mayor a 500 micras.

Las muestras de macrobentos fueron colectadas por triplicado mediante el uso de una draga Van Veen, que tiene un área de superficie de colecta de 0.05 m². El sedimento colectado fue tamizado con una malla de 500 micras de tamaño de poro. Las muestras fueron fijadas en formol al 7% y trasladas al laboratorio Inspectorate Services SAC para su identificación taxonómica.

a.3) Necton

El necton está conformado por los organismos que viven en el agua y que son capaces de nadar y desplazarse por movimiento propio sin que su movimiento dependa de las corrientes. Forman parte del necton los peces.

Al igual que las demás comunidades hidrobiológicas se realizaron la colecta de peces en cada estación de muestreo. Para estandarizar el esfuerzo de pesca se hizo una combinación de dos artes de pesca: red de arrastre (de 10 m de largo con 1 cm de tamaño de cocada) y atarraya, en cada estación se hicieron 2 arrastres con redes y 3 laces con atarraya. Las muestras obtenidas fueron identificadas en campo y se preservo algunos individuos en formol al 10% para confirmar su taxonomía

b) Análisis de datos.

Con los datos obtenidos en las evaluaciones biológicas, se realizó el análisis de las comunidades acuáticas, que incluyó la determinación de especies y densidad de individuos. Para los aspectos cuantitativos de la estructura comunitaria se consideran el número de especies, densidad y biomasa media por estación de muestreo. Además se cuantificó el grado de heterogeneidad de las comunidades hidrobiológicas a través de medidas de diversidad. Para los cálculos univariados y multivariados se utilizó el software PRIMER 6 (Plymouth Routines In Multivariate Ecological Research)

b.1) Índices de comunidad de especies.

Para el análisis se han considerado cuatro índices de heterogeneidad, que es aplicado a las comunidades biológicas: Shannon-Wiener, Índice de Simpson, Equidad de Pielou y Riqueza de Especies (Margalef). Estos índices cuantifican la abundancia proporcional, la Equitabilidad y la riqueza de las especies en las estaciones estudiadas. Los índices obtenidos son utilizados para caracterizar la estructura comunitaria de los ensamblajes biológicos.

Índice de Diversidad de Shannon-Wiener

$$H' = -\sum (n_i / N) \log_2(n_i / N)$$

Donde: H' = Índice de Diversidad de Shannon-Wiener

ni = número de individuos de la especie i

N = número total de individuos

Este Índice teórico es el más usado por ajustarse mejor a la distribución de los organismos en la naturaleza, pudiendo realizarse comparaciones estadísticas. Esta expresión se acomoda a la distribución habitual de las numerosas asociaciones de especies, por lo cual permite la aplicación de métodos estadísticos diversos (Clarke, 2001).

b.2) Índice de Diversidad de Simpson.

Manifiesta la probabilidad de que dos individuos tomados al azar de una muestra sean de la misma especie. Está fuertemente influido por la importancia de las especies más dominantes (Magurran, 1988). Como el índice de Simpson mide la dominancia dentro de una comunidad, la diversidad puede calcularse como 1- λ (Lande, 1996).

$$D = 1 - \Sigma(Pi)^2 = 1 - \lambda$$

Una característica de Simpson es su sensibilidad a los cambios en las especies abundantes. Es útil para el monitoreo ambiental, que miden la variación de las especies más abundantes por alguna perturbación. Los valores de la diversidad según Simpson se dan dentro de una escala de 0 a 1; siendo mayor cuando se aproxima a uno y menor al acercarse a cero, lo que indicaría mayor dominancia.

b.3) Índice de Equitatividad de Pielou.

El índice de equitatividad es un componente importante de los índices de

diversidad. Se realiza empleando:

J'= H'/log₂S

Donde S = es el número máximo de especies en la muestra

Este índice expresa como los individuos de cada especie están distribuidos. para

lo cual los individuos son divididos entre los taxa presentes. Su valor va de 0 a 1,

de forma que 1 corresponde a situaciones donde todas las especies son

igualmente abundantes.

b.4) Índice de riqueza de Margalef

Mide la riqueza de especies y es uno de índices más usados, ya que

proporcionan una expresión compresible e instantánea de la diversidad.

(Magurran 1986)

 $d = (S -1) / log_2 N$

Donde:

S: número de espécies

N: número de indivíduos

Este índice permite estimar la riqueza de especies con base en la distribución

numérica de los individuos de las diferentes especies, en función del número de

individuos existentes en la muestra analizada. (teórico). Valores inferiores a 2.0

son considerados como ecosistemas con baja riqueza (producida por efectos

antropogénicos).

b.5) Análisis de similaridad.

Las estaciones fueron comparadas para definir áreas con similar composición taxonómica. Para ello se analizó una matriz de densidad correspondiente a la abundancia de cada taxa por estación evaluada, empleando como medida de disimilitud el índice de Bray-Curtis (1957) y el método de la media ponderada para construir el dendrograma (UPGMA) según Figueroa (2003).

El índice de similaridad de Bray-Curtis fue usado para determinar el grado de semejanza o diferencia entre las estaciones de muestreo:

$$BC = \sum_{j=n}^{n} |X_{1j} - X_{2j}| / \sum_{j=n}^{n} (X_{1j} - X_{2j})$$

Donde: BC = Coeficiente de Distancia de Bray–Curtis

 Σ = sumatoria (desde 1 hasta n)

X_{1j} = abundancia de la especie j colectada en la estación 1

X_{2j} = abundancia de la especie j colectada en la estación 2

| | = valor absoluto

La matriz obtenida del análisis de similaridad de Bray-Curtis es sometida a un análisis multivariado de clasificación usando el método de agrupamiento UPGMA (Sneath y Sokal, 1973).

b.6) Análisis de Escalamiento Multidimensional (MDS)

Este análisis multivariado de interdependencia trata de representar en un espacio geométrico de pocas dimensiones las proximidades existentes entre pares de objetos como distancias entre puntos. Está elaborado con los valores de similaridad de composición y abundancia de las especies bentónicas de la estaciones muestreadas. Como medida que nos indica lo adecuado del modelo usamos el stress que Kruskal en 1964 definió como "Mientras mayor sea la diferencia entre las disparidades y las distancias, mayor será el Stress" y por tanto

peor será el modelo. Entonces el Stress es una medida de la no bondad del ajuste. Su valor mínimo es 0, mientras que su límite superior para nestímulos es $\sqrt{1-(2/n)}$.

Kruskal (1964) sugiere las siguientes interpretaciones del Stress:

•	0.2	Pobre
•	0.1	Aceptable
•	0.05	Bueno
•	0.025	Aceptable
•	0.0	Excelente

3.4.3.1.5 Resultados

Los informes de ensayo hidrobiológicos de ambas épocas se adjuntan en el **Anexo 3-8.**

a) Plancton

a.1) Composición Especiológica

El número de especies reportadas en abril fue de 7 especies distribuidas en 02 phylum: Ochrophyta con 5 especies (71%) y el phylum Cryptophyta con 2 especies (29%). El mayor número de especies fue reportado en la estación VI-01, cerca de la desembocadura del estuario con 6 especies, mientras que en las estaciones VI-02 y VI-03 el número de especies fue de 4.

En julio el total de especies reportadas fueron 2, pertenecientes al phylum Ochrophyta. El mayor número de especies fue reportado en abril, la estación ubicada en la desembocadura del estuario (VI-01) fue la que alcanzó mayor número de especies. Se observa que en julio disminuye el número de especies reportadas en todas las estaciones.

Cuadro 3.4.3-2. Número de Especies del Fitoplancton por phylum y por Estación de Muestreo

	ESPECIE		Abril			Julio	
	LOI LOIL	VI - 01	VI - 02	VI - 03	VI - 01	VI – 02	VI - 03
0	chrophyta						
1	Coscinodiscus wailesii	0	0	0	Х	Х	Х
2	Detonula pumila	0	0	0	Х	0	Х
3	Chaetoceros lorenzianus	1	0	0	0	0	0
4	Guinardia striata	0	0	Х	0	0	0
5	Lithodesmium undulathum	X	X	0	0	0	0
6	Pseudosolenia calcar avis	Х	Х	X	0	0	0
7	Dicthyiocha fibula	Х	X	Х	0	0	0
С	ryptophyta	•					
1	Leucocryptos sp.	X	X	0	0	0	0
2	Leucocryptos marina	Х	0	X	0	0	0
To	otal	6	4	4	2	1	2

7 6 de especies 5 4 3 ŝ 2 1 0 abril julio julio abril abril julio VI-01 VI-02 VI-03 Ochrophyta Cryptophyta

Figura 3.4.3-1. Composición de Especies del Fitoplancton por División por Estación de Muestreo

a.2) Densidades

Los valores de densidad promedio en el mes de abril variaron desde 180 células /L, en la estación VI-03 (ubicado en la unión del estuario con la laguna La Niña) hasta el máximo valor registrado con 380 células/L en la estación VI-01 estación ubicada en la desembocadura. En el mes de julio los valores de densidad fueron menores fluctuando desde 4 células /L, en la estación VI-02 (ubicado cerca al puente Virrilá); hasta la máxima abundancia en la desembocadura (VI-01) con 22 celulas/L. (cuadro 3.4.3-3 y figura 3.4.3-4).

Cuadro 3.4.3-3. Densidades Densidades del Fitoplancton por phylum y por Estación de Muestreo (Número de individuos/mL)

	ESPECIE		Abril			Julio	
	LOI LOIL	VI-01	VI-02	VI-03	VI-01	VI-02	VI-03
0	chrophyta	•		<u>'</u>		•	<u> </u>
1	Coscinodiscus wailesii	0	0	0	7	4	5
2	Detonula pumila	0	0	0	15	0	10
3	Chaetoceros lorenzianus	40	0	0	0	0	0
4	Guinardia striata	0	0	20	0	0	0
5	Lithodesmium undulathum	80	60	0	0	0	0
6	Pseudosolenia calcar avis	140	120	40	0	0	0
7	Dicthyiocha fibula	20	40	60	0	0	0
С	ryptophyta	I			I	· L	L
1	Leucocryptos sp.	40	40	0	0	0	0
2	Leucocryptos marina	60	0	60	0	0	0
To	otal	380	260	180	22	4	15

La especie más abundante en abril fue la diatomea *Pseudosolenia calcar avis* que es una especie cosmopolita de aguas cálidas, ocasionalmente en aguas templadas, ha sido reportado en aguas costeras (Sunesen, 2007). Es una especie asociada a eventos nocivos en otras áreas geográficas, así *Pseudosolenia calcar avis* ha sido mencionada como causante de mortalidad masiva de organismos acuáticos, debido a las condiciones de hiperoxia y anoxia generadas por sus floraciones en zonas eutróficas de las costa de Turquía (Koray 2004). Otras diatomeas abundantes fueron *Lithodesmium undulathum* y *Dicthyiocha fibula*.

En julio se reportó la presencia de *Coscinodiscus wailesii*, una diatomea que se ha encontrado en el Océano Pacífico, principalmente en aguas costeras y reportada también en estuarios (Fernandes, 1992). Cuando esta especie es abundante puede producir grandes cantidades de exudados de polisacáridos (mucílago) que puede interferir con las actividades de pesca. Se considera una especie potencial de floraciones algales nocivas (Nagai, 1996).

400 320 N° de células / L 240 160 80 0 abril julio julio abril julio abril VI-01 VI-02 VI-03 ■ Ochrophyta Cryptophyta

Figura 3.4.3-2. Densidades del Fitoplancton por phylum (Número de individuos/mL)

a.3) Parámetros Comunitarios

Los índices comunitarios estimados se presentan en el cuadro 3.4.3-4. El número de especies fue mayor en abril con un máximo de 6 mientras que en julio se reportaron solo 2 especies En julio, en la estación VI-02 solo se reportó una especie, no siendo posible el cálculo de los parámetros comunitarios.

El índice de riqueza de especies de Margalef en abril varió desde 0.540 en la estación VI-02 (estación que presenta sólo 4 especies) a 0.842 en la estación VI-01 (ubicada en la desembocadura del estuario) donde se reportó el mayor número de especies en todo el estudio. Los valores de riqueza de especies según el índice de Margalef fueron bajos en julio, con valores menores a 0.369 en la estación VI-01.

El índice de diversidad de Shannon-Wiener (H')en el mes de abril fluctuó desde 1.834 bits/ individuo (VI-02)hasta 2.332 bits/individuo (VI-01). En julio los valores

de diversidad disminuyeron alcanzando un máximo valor en la estación VI-03 con 0.918 bits/individuo mientras que la estación VI-02 tuvo un valor de 0.0.

El índice de diversidad de Simpson (1-λ) en abril fluctuó desde 0.686 (estación VI-02) hasta 0.770 (estación VI-01). En julio los valores de diversidad de Simpson son menores a 0.434 (estación VI-01).

Cuadro 3.4.3-4. Parámetros Comunitarios del Fitoplancton

Temporada	Estación	S	N	d	J'	H'(log ₂)	1-λ
	VI-01	6	380	0.842	0.902	2.332	0.770
Abril	VI-02	4	260	0.540	0.917	1.834	0.686
	VI-03	4	180	0.578	0.946	1.891	0.716
	VI-01	2	22	0.324	0.902	0.902	0.434
Julio	VI-02	1	4	0.000	0.000	0.000	0.000
	VI-03	2	15	0.369	0.918	0.918	0.444

Leyenda: S= número de especies, N= número de individuos, d= riqueza de especies de Margalef, J'=equitatividad de Pielou, H'= Diversidad de Shannon- Wiener y 1-λ = Diversidad de Simpson

Los valores de equidad de Pielou en abril muestran a la estación VI-01 con un valor de 0.842, indicando a una comunidad con distribución homogénea de las especies sin dominancia de alguna especie. La estación VI-02 presentó un valor de 0.540 y la estación VI-03 alcanzó un valor de 0.578; ambos valores indican una baja homogeneidad de especies. En julio el índice de Pielou es menor, siendo el máximo valor 0.369 en la estación VI-03 y 0.324 en la estación VI-02, indicando una dominancia de alguna especie en la comunidad.

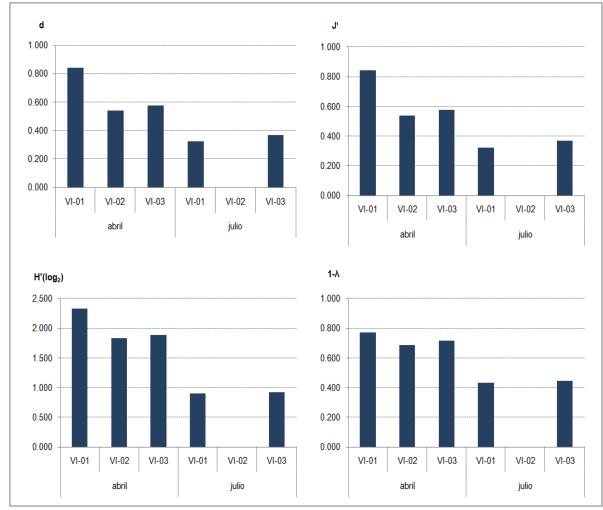


Figura 3.4.3-3. Comparación de los Índices de diversidad del fitoplancton

d= riqueza de especies de Margalef, J'=equitatividad de Pielou, H'= Diversidad de Shannon- Wiener y $1-\lambda$ = Diversidad de Simpson

a.4) Análisis de Similaridad

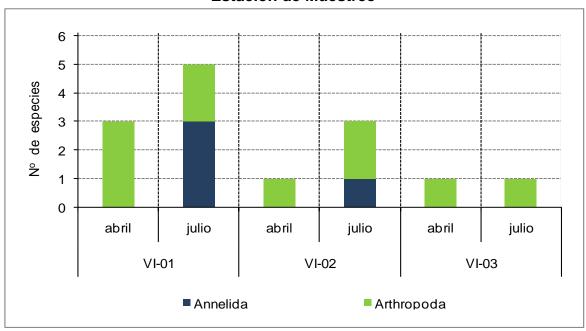
El análisis de similaridad muestra un fuerte agrupamiento entre las estaciones por temporada. Esto muestra una fuerte estacionalidad en la composición de especies del fitoplancton del estuario.

20 (%) pepinelimis 60 VI-02 julio VI-03 julio VI-03 abril

Figura 3.4.3-4. Dendrograma del Índice de Similaridad de Bray-Curtis del Fitoplancton.

b) Bentos

b.1) Composición Especiológica


El análisis de la composición taxonómica de la macrofauna del estuario de Virrrilá registró en abril 4 especies de macroinvertebrados todas pertenecientes al phylum Arthropoda. El 75% de las especies pertenecen al orden Decápoda el 25% de las muestras pertenecen al orden Díptera. El mayor número de especies (3) se encontró en la estación VI-01.

En Julio el número de especies reportadas fue de 6, el 50% de las cuales pertenecieron al phylum Annelida, siendo más abundantes en la estación VI-01. El phylum Arthropoda estuvo representado por 3 especies.

Cuadro 3.4.3-5. Número de Especies del macrobentos por phylum y por Estación de Muestreo

	ESPECIE		Abril			Julio	
	20. 20.2	VI-01	VI-02	VI-03	VI-01	Julio VI-02 0 0 X X X 0 0 0 3	VI-03
An	nelida	1	•	•	•		•
1	Nereis sp.	0	0	0	Х	0	0
2	Cauleriella magnaoculata	0	0	0	Х	0	0
3	Branchiocapitella abranchiata	0	0	0	Х	Х	0
Art	thropoda	1				1	
1	Gammaridae	0	0	0	X	0	0
2	Callinectes arcuatus	Х	0	0	Х	Х	0
3	Orthocladinae	0	0	Х	0	Х	Х
4	Pagurus sp.	X	0	0	0	0	0
5	Uca panamensis	Х	Х	0	0	0	0
То	tal	3	1	1	5	3	1

Figura 3.4.3-5. Composición de Especies del Macrobentos por phylum por Estación de Muestreo

b.2) Densidades

Los valores de densidad promedio en el mes de abril variaron desde 20 individuos/m² en la estación VI-01 hasta 1057individuos/m² en la estación VI-03. En las estaciones VI-01 y VI-02 se reportó la presencia del cangrejo violinista *Uca panamensis* esta especie limitada su distribución a determinadas zonas intermareales y sustratos específicos con barro y arena (Rosenberg, 2001). Respecto a sus hábitos alimenticios los adultos raspan con sus quelas menores el sustrato donde cortan las algas que cubren las superficies de roca; los cangrejos juveniles prefieren las zonas bajas de las playas, en donde filtran alimentos suspendidos, durante la marea baja. (Prahl, 1979).

Cuadro 3.4.3-6. Densidades promedio del macrobentos por Estación de Muestreo (Número de individuos/m2)

	ESPECIE		Abril		Julio					
	201 2012	VI-01	VI-02	VI-03	VI-01	VI-02	VI-03			
An	nelida									
1	Nereis sp.	0	0	0	7	0	0			
2	Cauleriella magnaoculata	0	0	0	7	0	0			
3	Branchiocapitella abranchiata	0	0	0	4993	53	0			
Art	hropoda									
1	Gammaridae	0	0	0	33	0	0			
2	Callinectes arcuatus	7	0	0	7	13	0			
3	Orthocladinae	0	0	1057	0	13	1600			
4	Pagurus sp.	7	0	0	0	0	0			
5	Uca panamensis	7	27	0	0	0	0			
То	tal	20	27	1057	5047	80	1600			

Fuente: BISA, 2012

La jaiva azul *Callinectes arcuatus* fue otro cangrejo reportado en el área de estudio. Habita aguas someras; sus patrones de distribución están relacionados con las características del hábitat, como el sedimento, extensión del estuario y la cercanía a los manglares, que le proporcionan refugio (Buchanan y Stoner 1988)

Las mayores densidades se reportaron en la estación VI-03 (ubicada en la unión del estuario con la laguna de La Niña) con un promedio 1057 individuos/m²formado exclusivamente por individuos de la familia Chironomidae, subfamilia Orthocladine. Los chironómidos son una familia de dípteros de amplia distribución; sus estadios larvales se encuentran en diversos ambientes acuáticos y forman un grupo importante de la dieta de los peces.

6000 ${\sf m}^2$ de individuos / 5000 4000 3000 2000 1000 0 julio abril julio abril abril julio VI-01 VI-02 VI-03 Annelida Arthropoda

Figura 3.4.3-6. Densidades promedio del macrobentos por Estación de Muestreo (Número de individuos/m2)

Fuente: BISA, 2012

En el mes de julio los valores de densidad fluctuaron desde 80 individuos/m² en la estación VI-02 (ubicada cerca al puente Virrilá) hasta 5047 individuos/m²en la desembocadura (VI-01). Esta alta densidad fue dada por la abundancia del poliqueto *Branchiocapitella abranchiata*, una especie que se alimenta de detritus y que alcanza grandes densidades cuando los sedimentos presentan mayor cantidad de materia orgánica.

b.3) Parámetros Comunitarios

El índice de riqueza de especies de Margalef en abril tuvo un valor máximo de 0.668 en la estación VI-01. Las estaciones VI-02 y VI-03 presentaron solo una especie por lo que no se calculó el índice. En julio el índice de riqueza fue 0.456 en la estación VI-02 y el máximo valor (0.469) se presentó en la estación VI-01.

El índice de diversidad de Shannon-Wiener (H') solo fue calculado en abril para el mes de abril para la estación VI-01, ya que las otras estaciones presentaron una sola especie; el índice dio un valor de 1.585 bits/ individuo. En julio la estación más diversa fue la estación VI-02 con 1.252 bits/ individuo. En la estación VI-03 solo se reportó una especie.

El índice de diversidad de Simpson (1-λ) se comportó como el índice de Shannon, con diversidades bajas, el mayor valor correspondió al mes de abril con 0.667.

Cuadro 3.4.3-7. Parámetros Comunitarios del macrobentos

Temporada	Estación	S	N	d	J'	H'(log ₂)	1-λ
	VI-01	3	20	0.668	1.000	1.585	0.667
Abril	VI-02	1	27	0.000	0.000	0.000	0.000
	VI-03	1	1057	0.000	0.000	0.000	0.000
	VI-01	5	5047	0.469	0.043	0.101	0.021
Julio	VI-02	3	80	0.456	0.790	1.252	0.500
	VI-03	1	1600	0.000	0.000	0.000	0.000

Fuente: BISA, 2012

Leyenda: S= número de especies, N= número de individuos, d= riqueza de especies de Margalef, J'=equitatividad de Pielou, H'= Diversidad de Shannon- Wiener y 1- λ = Diversidad de Simpson

Los valores de equidad de Pielou en abril muestran a la estación VI-01 con un valor de 1.0 correspondiente a una comunidad con distribución homogénea de sus especies. En las estaciones VI-02 y VI-03 solo se reportó una especie lo que puede dar un valor errado de dominancia total. En julio el índice de Pielou registra un valor de 0.043 en la estación VI-01, este valor muestra una gran dominancia de alguna especie dentro de la comunidad, en este caso debido a la presencia del

poliqueto detritívoro *Branchiocapitella abranchiata* que alcanza grandes densidades indicando un sedimento rico en detritus y una colonización rápida por esta especie oportunista. En la estación VI-02 el valor de homogeneidad es bajo con 0.790. En VI-03 solo se presenta una especie.

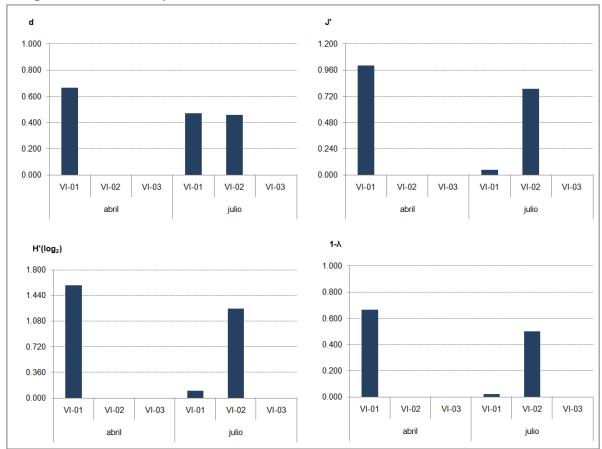
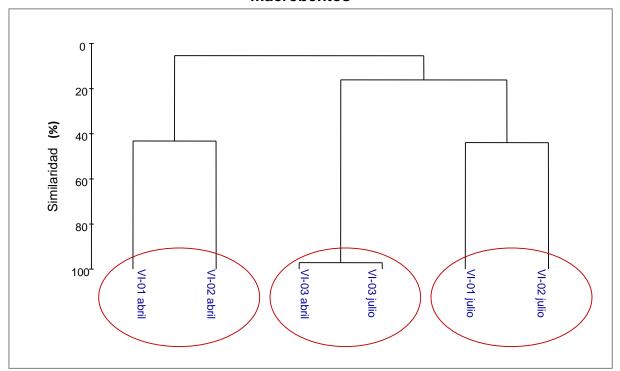


Figura 3.4.3-7. Comparación de los Índices de diversidad del macrobentos

Fuente: BISA, 2012


d= riqueza de especies de Margalef, J'=equitatividad de Pielou, H'= Diversidad de Shannon- Wiener y $1-\lambda$ = Diversidad de Simpson

b.4) Análisis de Similaridad

El análisis de clúster muestra tres agrupamientos:un grupo formado por las estaciones VI-01 y VI-02 en abril que presentan una similaridad de 43.2%. El otro grupo está formado la estación VI-03 (abril) y VI-03 (julio) mostrando un agrupamiento muy alto, 97.1%. que fue dado por la presencia en ambos periodos de individuos de la familia Chironomidae. El tercer agrupamiento se da entre las

estaciones VI-01 (julio) y VI-02 (julio) con una similitud de 43.9% ambas estaciones presentan crustáceos comunes en julio.

Figura 3.4.3-8. Dendrograma del Índice de Similaridad de Bray – Curtis del macrobentos

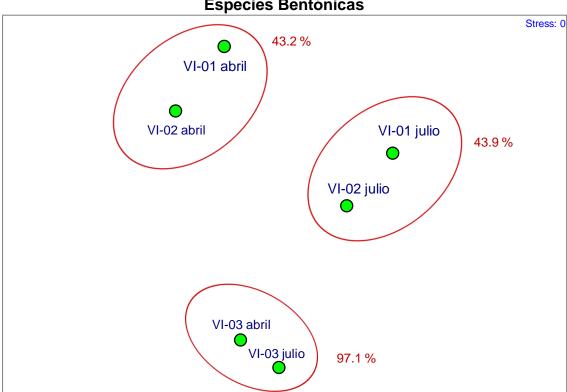
Cuadro 3.4.3-8. Densidad de Organismos Bentónicos (Número de individuos/1m2)

Abril

				٧	/I-01		VI-02					
PHYLLUM	CLASE	ORDEN	FAMILIA	GENERO / ESPECIE	VI-01-A	VI-01-B	VI-01-C	Prom.	VI-02-A	VI-02-B	VI-02-C	Prom.
ARTHROPODA	MALACOSTRACA	DECAPODA	PAGURIDAE	Pagurus sp.	20	0	0	7	0	0	0	0
ARTHROPODA	MALACOSTRACA	DECAPODA	OCYPODIDAE	Uca panamensis	20	0	0	7	20	40	20	27
ARTHROPODA	MALACOSTRACA	DECAPODA	PORTUNIDAE	Callinectes arcuatus	0	0	20	7	0	0	0	0
ARTHROPODA	INSECTA	DIPTERA	CHIRONOMIDAE	Orthocladinae	0	0	0	0	0	0	0	0

Fuente: BISA, 2012

						VI-03			
PHYLLUM	CLASE	ORDEN	FAMILIA	GENERO / ESPECIE	VI-03-A	VI-03-B	VI-03-C	Prom.	
ARTHROPODA	MALACOSTRACA	DECAPODA	PAGURIDAE	Pagurus sp.	0	0	0	0	
ARTHROPODA	MALACOSTRACA	DECAPODA	OCYPODIDAE	Uca panamensis	0	0	0	0	
ARTHROPODA	MALACOSTRACA	DECAPODA	PORTUNIDAE	Callinectes arcuatus	0	0	0	0	
ARTHROPODA	INSECTA	DIPTERA	CHIRONOMIDAE	Orthocladinae	1200	1050	920	1057	


Julio

					VI-01					VI-02		
PHYLLUM	CLASE	ORDEN	FAMILIA	GENERO / ESPECIE		VI-01-B	VI-01-C	Promedio	VI-02-A	VI-02-B	VI-02-C	Promedio
ANNELIDA	POLYCHAETA	ACICULATA	NEREIDAE Nereis sp.		0	20	0	7	0	0	0	0
		CANALIPAL		Cauleriella								
ANNELIDA	POLYCHAETA	PATA	CIRRATULIDAE	magnaoculata	0	20	0	7	0	0	0	0
		SCOLECID		Branchiocapitella								
ANNELIDA	POLYCHAETA	Α	CAPITELLIDAE	abranchiata	2020	4240	8720	4993	0	0	160	53
		AMPHIPOD										
ARTHROPODA	MALACOSTRACA	Α	GAMMARIDAE	Gammaridae indet.	0	100	0	33	0	0	0	0
ARTHROPODA	MALACOSTRACA	DECAPODA	PORTUNIDAE	Callinectes arcuatus	20	0	0	7	0	20	20	13
ARTHROPODA	INSECTA**	DIPTERA	CHIRONOMIDAE Orthocladinae		0	0	0	0	40	0	0	13

						VI-03				
PHYLLUM	CLASE	ORDEN	FAMILIA	AMILIA GENERO / ESPECIE		VI-03-B	VI-03-C	Promedi o		
ANNELIDA	POLYCHAETA	ACICULATA	NEREIDAE	Nereis sp.	0	0	0	0		
ANNELIDA	POLYCHAETA	CANALIPALPATA	CIRRATULIDAE	Cauleriella magnaoculata	0	0	0	0		
ANNELIDA	POLYCHAETA	SCOLECIDA	CAPITELLIDAE	Branchiocapitella abranchiata	0	0	0	0		
ARTHROPODA	MALACOSTRACA	AMPHIPODA	GAMMARIDAE	Gammaridae indet.	0	0	0	0		
ARTHROPODA	MALACOSTRACA	DECAPODA	PORTUNIDAE	Callinectes arcuatus	0	0	0	0		
ARTHROPODA	INSECTA**	DIPTERA	CHIRONOMIDAE	Orthocladinae	2960	160	1680	1600		

b.5) Análisis de Escalamiento Multidimensional (MDS)

Esta técnica multivariada se usó para el análisis del ensamblaje del macrobentos del área de estudio, considerando cada taxón como una variable y la abundancia como un atributo. El valor de estrés (0.0) expresa la bondad de ajuste. Se forman tres agrupamientos, los grupos se han marcado en base al clúster jerárquico con sus respectivos porcentajes de similitud, el primer grupo está formado por las estaciones VI-01 y VI-02 en el mes de abril con una similitud del 43.2%, el segundo grupo formado por las estaciones VI-01 y VI-02 en julio con 43.9% y el tercero por la estación VI.03 en ambas temporadas con una similitud del 97.1%. (Figura 3.4.3-9)

c) Necton

c.1) Composición Especiológica

Durante las dos evaluaciones se registraron un total de 9 especies de peces, pertenecientes a 9 familias. En abril se registraron 5 especies, siendo la estación VI-02 la que presentó el mayor registro con 4 especies. En julio se registró 8 especies, el mayor número de especies fue 7 registrado en la estación VI-02, ubicada en la parte media del estuario cerca al puente Virrilá.

Como se observa el mayor número de especies se presenta en la estación VI-02 en ambas evaluaciones, donde se presentan tanto especies de aguas marinas, como de agua dulce (*Oreochromis niloticus, Poecilia reticulata,Trichomycterus sp.*). Ver cuadro 3.4.3-9 y figura 3.4.3-10.

8 7 de especies 6 5 4 څ 3 2 1 0 abril julio abril julio abril julio VI-01 VI-02 VI-03

Figura 3.4.3-10. Composición de Especies de peces por Estación de Muestreo

Cuadro 3.4.3-9. Número de Especies de peces por Estación de Muestreo

PHYLLUM CL	CLASE	ORDEN	FAMILIA GENI	GENERO / ESPECIE	NOMBRE	ABRIL			JULIO	JULIO		
	CLASE			GENERO / ESPECIE	COMUN	VI-01	VI-02	VI-03	VI-01	VI-02	VI-03	
Chordata	Trichomycterus	Perciformes	Cichlidae	Oreochromis niloticus	Tilapia	0	Х	Х	Х	Х	Х	
Chordata	Trichomycterus	Perciformes	Carangidae	Oligoplites altus	Paramo	0	Х	0	0	Х	0	
Chordata	Actinopterygii	Perciformes	Haemulidae	Pomadasys panamensis	Roncador	0	Х	0	0	0	0	
Chordata	Actinopterygii	Mugiliformes	Mugilidae	Mugil cephalus	Lisa	Х	Х	Х	Х	Х	Х	
Chordata	Actinopterygii	Mugiliformes	Mugilidae	Mugil curema	lisa plateada	0	0	0	0	0	Х	
Chordata	Actinopterygii	Siluriformes	Trichomycteridae	Trichomycterus sp.	Life	0	0	0	0	Х	0	
Chordata	Actinopterygii	Pleuronectiformes	Cynoglossidae	Symphurus sp	Lengüeta	0	0	0	0	Х	0	
Chordata	Actinopterygii	Cyprinodontiformes	Poeciliidae	Poecilia reticulata	Guppy	0	0	Х	Х	Х	Х	
Chordata	Actinopterygii	Perciformes	Gobiidae	Ctenogobius sagittula		0	0	0	0	Х	0	
TOTAL	•					1	4	3	3	7	4	
Considerare	mos los grupos ta	l y como fueron estable	ecidos por Nelson (1	994)			-1					
Invertebrado	s capturados dura	ante los muestreos de p	peces									
Arthropoda	Malacostraca	Decapoda	Palaemonidae	Macrobrachium sp.	Camarón	0	Х	0	0	0	0	
Arthropoda	Malacostraca	Decapoda	Penaeidae	Litopenaeus vannamei	langostino blanco	0	Х	Х	Х	Х	Х	

c.2) Abundancia

En abril el número de individuos reportados en los lances varió desde 6 individuos en la estación VI-02 hasta 29en la estación VI-01. En esta estación el 100% de la captura estuvo constituido por la lisa *Mugil cephalus*. Esta especie está adaptada a vivir en aguas marinas como en estuarios donde las aguas son salobres; siendo por ello encontrada a lo largo del estuario.

En julio el número de individuos reportados en los lances varió desde 20 en la estación VI-01 hasta 36 en la estación VI-02, donde la mayoría de individuos pertenecía a la especie *Poecilia reticulata*que es una especie introducida adaptada a un amplio rango de salinidad, pero requiere temperaturas bastante cálidas.

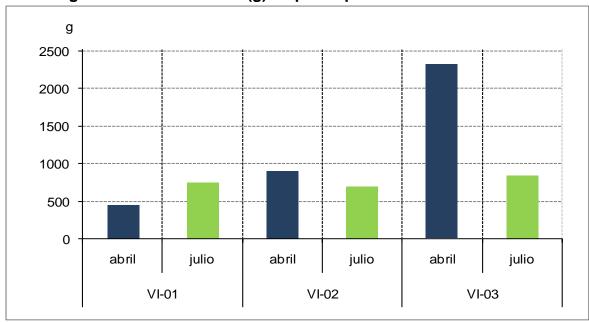
Cuadro 3.4.3-10. Densidades de Peces por Estación de Muestreo

Genero especie		ABRIL		JULIO				
Oction capacit	VI-01	VI-02	VI-03	VI-01	VI-02	VI-03		
Oreochromis niloticus	0	3	14	1	6	3		
Oligoplites altus	0	1	0	0	1	0		
Pomadasys panamensis	0	1	0	0	0	0		
Mugil cephalus	29	1	6	17	2	3		
Mugil curema	0	0	0	0	0	4		
Trichomycterus sp.	0	0	0	0	1	0		
Symphurus sp	0	0	0	0	1	0		
Poecilia reticulata	0	0	8	2	24	20		
Gobionellus sagittula	0	0	0	0	1	0		
TOTAL	29	6	28	20	36	30		

40 de individuos / 5 lances 32 24 16 8 0 abril julio abril julio abril julio VI-01 VI-02 VI-03

Figura 3.4.3-11. Densidades de peces por Estación de Muestreo (Número de individuos/ 5 lances)

c.3) Biomasa


Los valores de biomasa en gramos para el mes de abril variaron desde 450 g. en la estación VI-01 donde el 100% corresponde a *Mugil cephalus*. La máxima captura fue registrada en la estación VI-03 con 2 320g donde el 86.2% del peso corresponde a *Oreochromis niloticus*. En la estación VI-02 hay una mayor distribución de la contribución en peso de la cala correspondiendo a *Oreochromis niloticus*el 29.4% y a *Mugil cephalus*. El mismo porcentaje, mientra que El 23.5% corresponde a *Pomadasys panamensis*y el 17.6% a *Oligoplites altus*.

En julio la biomasa reportada varió desde 698 g. en la estación VI-02hasta 830 g. en la estación VI-03. En la estación VI-01 el 77% del peso correspondió a *Mugil cephalus*. En la estación VI-02 el 43% del peso correspondió a *Oreochromis niloticus*y el 28.7% a *Poecilia reticulata*En la estación VI-03 el 28.9% correspondió a *Oreochromis niloticus*, el 25.3% a *Mugil cephalus*yel 24.1% a *Mugil curema*

Cuadro 3.4.3-11. Biomasa (g) de Peces por Estación de Muestreo

Genero especie	ABRIL			JULIO			
	VI-01	VI-02	VI-03	VI-01	VI-02	VI-03	
Oreochromis niloticus	0	250	2000	150	300	240	
Oligoplites altus	0	150	0	0	40	0	
Pomadasys panamensis	0	200	0	0	0	0	
Mugil cephalus	450	250	250	570	100	210	
Mugil curema	0	0	0	0	0	200	
Trichomycterus sp.	0	0	0	0	10	0	
Symphurus sp	0	0	0	0	40	0	
Poecilia reticulata	0	0	70	20	200	180	
Gobionellus sagittula	0	0	0	0	8	0	
TOTAL	450	850	2320	740	698	830	

Figura 3.4.3-12. Biomasa (g) de peces por Estación de Muestreo

c.4) Parámetros Comunitarios

En abril el menor valor del índice de riqueza de Margalef fue 0.600 para la estación VI-3 y el mayor fue 1.674, en la estación VI-02. En la estación VI-01 no se pudo calcular el índice porque solo se reportó una especie. En julio el mayor índice de riqueza fue de 1.674 en la estación VI-02 (similar valor al muestreo de abril), el menor valor fue reportado en la estación VI-01.

El índice de diversidad de Shannon-Wiener (H') mostró a la estación VI-02 con el valor más alto (1.792 bits/individuo) mientras que la estación VI-03 tuvo la diversidad más baja con 1.493 bits/individuo. En julio la estación más diversa fue la estación VI-02 con 1.627 bits/individuo. Y el índice de diversidad más bajo fue cerca de la desembocadura del estuario con 0.748 bits/individuo.

El índice de diversidad de Simpson (1-λ) se comportó como el índice de Shannon, con diversidades bajas a media, el mayor valor correspondió al mes de abril con 0.667.en la estación VI-02.

Cuadro 3.4.3-12. Parámetros Comunitarios del ictioplancton

Temporada	Estación	S	N	d	J'	H'(log ₂)	1-λ
	VI-01	1	29	0.000		0.000	0.000
Abril	VI-02	4	6	1.674	0.896	1.792	0.667
	VI-03	3	28	0.600	0.942	1.493	0.622
	VI-01	3	20	0.668	0.472	0.748	0.265
julio	VI-02	7	36	1.674	0.580	1.627	0.522
	VI-03	4	30	0.882	0.721	1.442	0.518

Fuente: BISA, 2012

Leyenda: S= número de especies, N= número de individuos, d= riqueza de especies de Margalef, J'= equitatividad de Pielou, H'= Diversidad de Shannon-Wiener y 1- $\lambda=$ Diversidad de Simpson

Los valores de equidad de Pielou en abril muestran a la estación VI-03 con el mayor valor de equidad (0.942), en la estación VI-02 el valor de equidad es de 0.896 correspondiente a una comunidad con una distribución homogénea de sus especies. En las estaciones VI-01 solo se reportó una especie.

En julio el índice de Pielou registra un valor máximo de 0.721 en la estación VI-03, valor que indica que la comunidad tiende a la homogeneidad, es decir que el número de individuos por especie es semejante. Mientras que el valor más bajo fue reportado en la estación VI-01 con 0.472, lo que indica una dominancia en número de alguna especie, en caso fue la lisa que alcanzó la dominancia en la desembocadura del estuario.

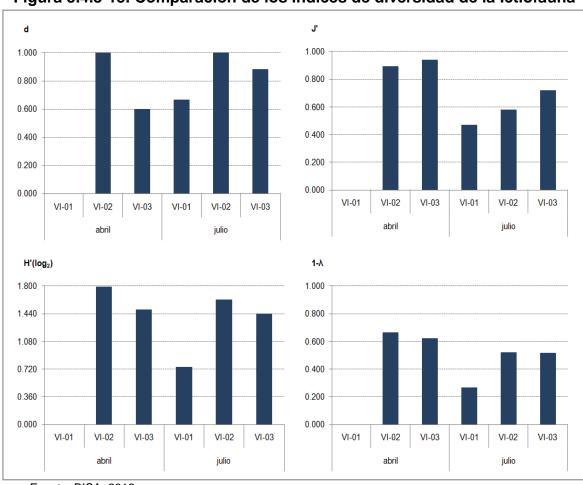
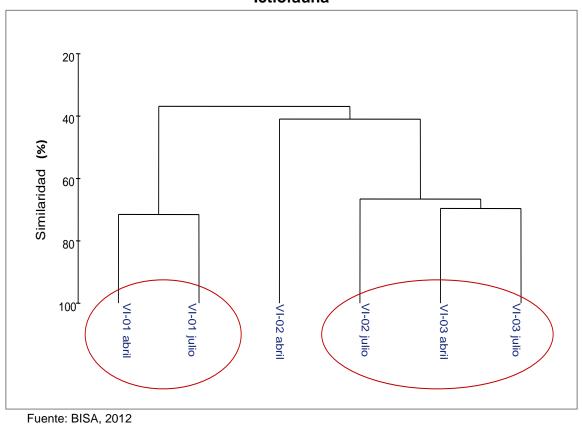


Figura 3.4.3-13. Comparación de los Índices de diversidad de la Ictiofauna

Fuente: BISA, 2012


d= riqueza de especies de Margalef, J'=equitatividad de Pielou, H'= Diversidad de Shannon- Wiener y 1- λ = Diversidad de Simpson

c.5) Análisis de Similaridad

El análisis de clúster muestra dos agrupamientos: un grupo formado por la estación VI-01 en ambos periodos de estudio, lo que indica que no hay diferencia de composición de especies entre ambas temporadas por ser un ambiente más influenciado por las características marinas.

El otro grupo está formado la estación VI-03 (abril), VI-03 (julio) y la estación VI-02 (julio).formado por comunidades más diversas con especies de origen marino y dulceacuícola. La estación VI-02 (abril) se encuentra separado porque presenta una composición íctica diferente entre estaciones de muestreo y temporada de estudio.

Figura 3.4.3-14. Dendrograma del Índice de Similaridad de Bray – Curtis dela Ictiofauna

c.6) Análisis de Escalamiento Multidimensional (MDS)

La técnica multivariada se usó para el análisis del ensamblaje de la ictiofauna. El valor de estrés (0.01) expresa un excelente ajuste. Se forman dos agrupamientos, el primero de las estaciones VI-01 (abril y julio) con una similaridad del 71.5%, un valor bastante alto que muestra una comunidad que no varía con la estacionalidad.

El otro grupo formado por las estaciones VI-03 (abril y julio) y la estación VI-02 (julio) con un valor de similaridad de 65.9%

VI-01 abril
VI-03 abril
VI-02 abril
VI-02 abril

Figura 3.4.3-15. Análisis de Escalamiento Multidimensional (MDS) de la ictiofauna

d) Invertebrados Capturados en las Redes

Durante el muestreo también fueron capturados invertebrados de manera incidental. El camarón de río *Macrobrachium* sp que registrósolo un individuo en abril (VI-02). El langostino blanco *Litopenaeus vannamei*se registró en las dos temporadas. La mayor abundancia de langostino blanco ocurrió en julio en la estación VI-01 con 22 individuos juveniles, seguido por la estación VI-02 con 12 individuos adultos.

Cuadro 3.4.3-13. Abundancia y biomasa de langostino blanco

Litopenaeus vannamei		ABRIL			JULIO	
Langostino blanco	VI-01	VI-02	VI-03	VI-01	VI-02	VI-03
Abundancia	0	1	1	22	12	1
Biomasa	0	10	10	320	300	10

Fuente: BISA, 2012

3.4.3.1.6 Conclusiones

- La temperatura del agua en el ecosistema de acuático de Virrilá osciló en el mes de abril desde 24. 2 °C en la estación VI-02 (ubicada en la parte media del estuario cerca al puente Virrilá) y 27.7 °C en la estación VI-01 (ubicada en la desembocadura del estuario). Mientras que en julio la temperatura osciló entre 23 °C en la estación VI-02 y 25.4 °C en la estación VI-01. Observándose que las mínimas temperaturas correspondieron en ambas evaluaciones a la estación VI-02 y las máximas en la estación VI-01, mientras que la estación VI-03 presentó temperaturas intermedias.
- En abril los valores de pH se encuentran dentro de los ECA para Agua Categoría 4. Ecosistemas Marino Costeros- Estuarios (6.9 y 8.5); variando desde 7.1 (aguas ligeramente alcalinas) hasta 8.9 (aguas alcalinas). En julio las estaciones VI-01 y VI-02 superan el ECA.
- Los valores de oxígeno disuelto en todas las estaciones cumplen con el ECA
 para Agua Categoría 4 Ecosistemas Marino Costeros Estuarios (≥4

- mg/L).Los valores de Oxígeno disuelto variaron entre 5.4 mg/L (VI-02) y 8.7 mg/L (estación VI-03).
- Los valores de conductividad fueron mayores en julio. Apreciándose un mayor incremento en la estación VI-01 (cerca de la desembocadura del estuario).
- La demanda bioquímica de oxígeno registró valores entre 2.0 mg/L y 4.3 mg/L, los cuales son menores al ECA (15 mg/L), indicando que hay poca materia orgánica para ser degradadas por las bacterias aerobias.
- Los valores de sólidos totales disueltos se encontraron entre 916 mg/L y 17 700 mg/L (estación VI-01). En todas las estaciones se superó el valor ECA (500 mg/L).
- Los valores de sólidos totales suspendidos mostraron valores entre 5 mg/L (estación VI-02, en abril) y 452.0 mg/L en la estación VI-01
- Los valores de sólitos totales suspendidos superaron el valor ECA (25 100 mg/L) en la estación VI-01 (cerca de la desembocadura del estuario) durante las dos evaluaciones y en la estación VI-03 (ubicada en la unión del estuario con la Laguna de la Niña) en la evaluación de julio.
- La estación ubicada cerca de la desembocadura del estuario (VI-1) presentó en abril una concentración de coliformes totales y fecales de 17 000 NMP/100mL superando en varias veces el valor ECA (2000 NMP/100mL), e indicando el vertimiento de aguas servidas.
- La concentración de fosfatos en Virrilá supera el valor ECA (0.5 mg/L.) en la estación VI-01 cerca de la desembocadura del estuario durante las evaluaciones de abril y julio y la estación VI-03 (ubicada en la unión del estuario con la Laguna de La Niña) en abril.
- Las concentraciones de silicatos en Virrilá fueron muy altas, superando en varias veces el valor ECA (0.14 - 0.17 mg/L). Las mayores concentraciones de silicatos se dieron en abril con valores que oscilaron entre 53.9282 mg/L y 57.8457 mg/L.
- La concentración de nitratos en Virrilá se encontró debajo del límite de detección analítica.

- La concentración de nitrógeno amoniacal superaron en todas las estaciones el valor ECA (0.05 mg/L). El mayor valor de nitrógeno amoniacal (0.7 mg/L) se registró en abril en la estación VI-01.
- Las concentraciones de sulfuro de hidrógeno (menores a 0.002 mg/L) y de fenoles (menores 0.001 mg/L) se encontraron debajo del límite de detección, que coincide en el caso del sulfuro de hidrógeno y fenoles con el valor ECA.
- Las concentraciones de aceites y grasas se encontraron por debajo del valor ECA (1 mg/L).
- Las concentraciones de hidrocarburos totales de petróleo y de hidrocarburos policíclicos aromáticos se encontraron debajo del límite de detección analítica.
- Los valores de cianuro libre se encontraron muy por debajo del valor ECA (0.022 mg/L).
- Los valores de arsénico, bario, cadmio, cromo hexavalente, cobre y mercurio se encuentran por debajo de los valores ECA.
- Los valores del níquel en abril superaron en todas las estaciones los valores ECA (0.002 mg/L) disminuyen en julio sin sobrepasar los estándares. La estación VI-01 (ubicado en la desembocadura del estuario) es la que alcanzo mayor concentración de Ni.
- Las concentraciones de plomo excedieron el valor del ECA (0.0081 mg/L) en las tres estaciones durante el mes de julio; mientras que en abril solo la estación VI-01 supera los valores ECA con un valor máximo (0.0350 mg/L).
- Los valores de Zinc con excepción de la estación VI-03 (ubicada en la unión del estuario con la Laguna de la Niña) durante el mes de abril, superan el valor ECA (0.03 mg/L).
- El análisis granulométrico en las tres estaciones indica que los suelos en Virrilá son de tipo limoso, representando el limo más del 98% del peso.
- El porcentaje de materia orgánica fue bajo representando entre el 0.209% y 0.325% del peso.
- Las concentraciones de arsénico, cadmio, cobre, cromo y zinc en los sedimentos de Virrilá se encuentran debajo del valor ISQG y del valor PEL.

- Las concentraciones de esos metales en el sedimento al momento del muestreo no representaban un riego para la biota de Virrilá.
- En la estación VI-01 la concentración de mercurio en los sedimentos (0.09 mg/kg) fue menor que el valor ISQG (0.13 mg/kg) y que el valor PEL (0.7 mg/kg). La estación VI-02 con 0.19 mg/kg sobrepasa el valor ISQG y PEL.
 Mientras que en la estación VI-03 el valor coincide con el valor ISQG.
- El fitoplancton en abril estuvo constituido por 7 especies pertenecientes al Phylum Ochrohyta y Cryptophyta. La estación VI-01 registró el mayor número de especies (6). En julio se registraron 2 especies pertenecientes al Phylum Ocrophyta.
- La mayor densidad de fitoplancton se registró en abril 380 células (VI-01), mientras que la menor se dio en julio con 4 células /L (VI-02) La especie dominante en abril fue la diatomea *Pseudosolenia calcar* y en julio la diatomea *Coscinodiscus wailesii*, que es una especie reportada para el océano Pacífico y que también se presenta en los estuarios (Fernández, 1992).
- El mayor índice de riqueza de especies de Margalef para el fitoplancton fue 0.842. El máximo valor del índice Shannon-Wiener (H') se dio en abril, en la estación VI-01 ubicada cerca de la desembocadura del estuario con 2.332 bits/individuo. El índice de diversidad de Simpson (1-λ) alcanzó un máximo de 0.770. Los mayores índices se dieron en abril en la estación VI-01, que fue la que tuvo el mayor número de especie y abundancia.
- En abril se registraron 4 especies pertenecientes al bentos en Virrilá, la mayoría de la especies pertenecían a los decápodas (cangrejos). En julio el número de especies subió a 6 donde la mitad correspondieron a los anélidos.
- La mayor densidad de macrobentos se registró en julio con 5047 individuos/m², donde el mayor número (4993 individuos/m²) pertenecieron al género *Branchiocapitella abranchiata*, ese mismo mes se presentaron 1600individuos/m² de chironomidos. En abril en la estación VI-03 se registraron 1057 individuos/m² de chironómidos.
- En Virrilá en abril en la estación VI-01 (ubicada cerca de la desembocadura) y en la estación VI-02 ubicada cerca al puente Virrilá se presentó el cangrejo

violinista *Uca panamensis* que tiene preferencia por los ambientes de arena y fango. Otro cangrejo reportado fue *Callinectes arcuatus* conocido como Jaiva azul.

- El mayor índice de Margalef (0.668) se registró en abril en la estación en la estación VI-01, ubicada cerca de la desembocadura del estuario. El máximo valor del índice de diversidad de Shannon y Wiener se dio en abril, en la estación VI-01 con1.585 bits/ individuo. El índice de Simpson (1-λ) tuvo su máximo valor en abril con 0.667. En abril no se pudo calcular índices en las estaciones VI-01 y VI-02, por presentar estas estaciones solo 1 especie. Los índices indican una baja riqueza y diversidad de especies pertenecientes al bentos en Virrilá.
- Se registraron 9 especies de peces, pertenecientes a 9 familias, en abril se reportaron 5 especies y en julio 8 especies. . Se registraron desde 20 individuos por lance en la estación VI-01 hasta 36 individuos en la estación VI-02.
- La captura en peces en gramos varió en abril desde 450 g en la estación VI-01 donde el 100% corresponde a *Mugil cephalus*, hasta 2 320 g en la estación VI-03 donde el 86.2% del peso corresponde a *Oreochromis niloticus*. En julio la captura varió desde 698 g en la estación VI-02 donde el 43% del peso correspondió a *Oreochromis niloticus* hasta 830 g en la estación VI-03.
- En las redes junto con los peces también fueron capturados: el camarón de río *Macrobrachium* sp que solo registró un individuo en abril (VI-02) y el langostino blanco *Litopenaeus vannamei* que se registró en las dos temporadas. La mayor abundancia de langostino fue en julio en la estación VI-01 con 22 individuos juveniles, seguido por la estación VI-02 con 12 individuos adultos.

3.4.3.1.7 Bibliografía

- Buchanan, B.A. & W.A. Stoner. 1988. Distributional patterns of blue crabs (Callinectes sp.) in a tropical estuarine lagoon. Estuaries 11: 231-239.
- Canadian Council of Ministers of the Environment. Canadian Sediment Quality Guidelines for the protection of the aquatic life. In Canadian Environmental Quality Guidelines 2002.
- Duinker, J. C. Suspended Matter in Estuaries: Adsorption and Desorption Processes. Ch. in Chem. and Biogeochem. of Estuaries, ed. by E. Olausson and I. Cato. Wiley Intersci. 1980, pp. 121-150.
- Fernandez, L. F. 1992. Seasonal variation of phytoplankton and hydrographycal parameters in a coastal station off Paranaguá Bay, Paraná, Brazil. Master Thesis in Botany, Federal University of Paraná State, Curitiba, Brazil, 93 pp.
- Fernandes, LF, Zehnder-Alves, L & JC Bassfeld. 2001. The recently established diatom Coscinodiscus wailesii (Coscinodiscales, Bacillariophyta) in Brazilian waters. I. Remarks on morphology and distribution. Phycol. Res. 49: 89-96.
- Inés Sunesen and Eugenia A. Sar (2007) Marine diatoms from Buenos Aires coastal waters (Argentina). IV. Rhizosolenia s. str., Neocalyptrella, Pseudosolenia, Proboscia. Phycologia: November 2007, Vol. 46, No. 6, pp. 628-643.
- Koray T. 2004. Potentially toxic and harmful phytoplankton species along the coast of the Turkish Seas. En: Steindinger KA, JH Landsberg, CR Tomas & GA Vargo (eds). Harmful Algae 2002, pp. 335-337. Florida Fish and Wildlife Conservation Commission, Florida Institute ofOceanography, and IOC of UNESCO, St. Petersburg, Florida.
- Nagai, S., Hori, Y., Miyahara, K., Manabe, T. and Imai, I. 1996. Population Dynamics of Coscinodiscus Wailesii Gran (Bacillariophyceae) in Harina-Nada, Seto Island Sea, Japan. In Yasumoto, T., Oshima, Y. and Fukuyo, Y. (Eds)

- Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO, Japan, pp. 239–42.
- Nelson, J.S., 1994. Fishes of the world. Third edition. John Wiley & Sons, Inc.,
 New York. 600 p.
- Ministerio del Ambiente. D.S. Nº 002-2008-MINAM Estándares Nacionales de Calidad Ambiental ECA para agua. Perú.
- Prahl, Henry von y Felipe Guhl (1979) "Notas sobre la biología de UCA (Minuca) panamensis (Stimpson, 1859) Crustacea, Ocipodidae) y su distribución en Colombia"; Anales del Instituto de Investigaciones Marinas de Punta Betín 11: 147-152
- Russell Lande May, 1996 Statistics and Partitioning of Species Diversity, and Similarity among Multiple Communities Oikos Vol. 76, No. 1, pp. 5-13
- Rosenberg, M. S. 2001. The systematics and taxonomy of fiddler crabs: A phylogeny of the genus Uca. J. Crust. Biol. 21: 839–869,
- KRUSKAL, J. B. (1964): Nonmetric Multidimensional Scaling: A Numerical Method. Psychometrika, 2, 115-129.

3.4.3.2 Ecosistema Acuático Marino

3.4.3.2.1 Hidrobiología

3.4.3.2.1.1 Introducción

Los estudios hidrobiológicos comprenden el estudio de las comunidades de los ambientes acuáticos, llámense plancton (fitoplancton y zooplancton), bentos y necton.

La costa peruana, en condiciones normales, tiene una biomasa planctónica promedio de 3,0 ml/m³ dentro de las 60 millas náuticas de la costa y de 5,0 ml/m³ a distancias menores de 30 millas náuticas (Rojas de Mendiola *et al.*1985). La biomasa fitoplactónica es la base de la cadena alimenticia en el mar y sustenta a las demás comunidades biológicas.

El zooplancton está constituido por pequeños invertebrados que viven en la columna de agua que se alimentan del fitoplancton y que a su vez sirven de alimento a otros seres como invertebrados y peces. Por su parte, el macrobentos está constituido por invertebrados que viven sobre o dentro del fondo, tomando su alimento en esta zona. Son organismos propios del bentos, los poliquetos, los crústaceos, caracoles, entre otros. Igualmente, la evaluación del necton, está referida a peces que viven en la columna de agua y que presentan desplazamiento propio.

Durante los meses de abril y julio del año 2012 se realizaron las evaluaciones hidrobiológicas en la zona Bayóvar (ver figura 3.4.3.2-1), que corresponde a la zona de influencia del proyecto Fosfatos. Los estudios comprendieron la determinación de la composición espececiológica de las diferentes comunidades, así como la densidad de individuos. En el caso de fitoplancton, se evaluaó el volumen de fitoplancton a nivel superficial y en la comunidad de bentos, la

biomasa. Se realizó también el análisis comunitario en las diferentes comunidades para poder interpretar los resultados encontrados.

Bahia Nonura

• Bayovar

| Description of the property of the

Figura 3.4.3.2-1. Zona de muestreo de biología marina, Sechura 2012.

Fuente: BISA, 2012.

3.4.3.2.1.2 Objetivos

- Realizar un estudio cuantitativo del fitoplancton en la zona evaluada, expresado en mililitros de plancton por metro cúbico de agua de mar filtrada (mL/m³),
- Determinar la composición de especies del fitoplancton así como la densidad del Fitoplancton a nivel superficial (Número de individuos/mL)
- Determinar la composición de especies de la comunidad del zooplancton y su densidad.
- Determinar la composición de especies de la comunidad del bentos marino así la densidad de las especies que lo conforman expresada en (Nº individuos/m²) y la biomasa de macroinvertebrados bentónicas en las zonas evaluadas.
- Evaluar mediante pesca experimental la fauna íctica presente en la zona.

 Evaluar la diversidad de las comunidades evaluadas y otros parámetros como dominacia para poder interpretar los resultados encontrados y realizar un seguimiento de estos en el futuro.

3.4.3.2.1.3 Área de estudio

En el cuadro 3.4.3.2-1, en el plano **830MA0001A-010-20-027**, asì como en las figuras 3.4.3.2-1 y 3.4.3.2-2 se pueden apreciar las estaciones de muestreo evaluados en Bayóvar. En dicha zona se evaluó un total 12 estaciones.

Cuadro 3.4.3.2-1. Estaciones de muestreo de biología marina, Sechura 2012

	Bayóvar										
Estación de	Coordenada WSG 84	s UTM	Profundidad								
monitoreo	Norte	Este	(m)								
BA-01	9 360778	492 310	5.3								
BA-02	9 361016	492 586	18								
BA-03	9 361271	492 783	42								
BA-04	9 360548	492 737	4.2								
BA-05	9 360 645	492 876	13								
BA-06	9 361 045	493 033	37.6								
BA-07	9 360327	493 049	4.1								
BA-08	9 360 554	493 224	29.6								
BA-09	9 360 806	493 420	46								
BA-10	9 360128	493 364	4.8								
BA-11	9 360365	493 558	36								
BA-12	9 360 622	493 743	46								

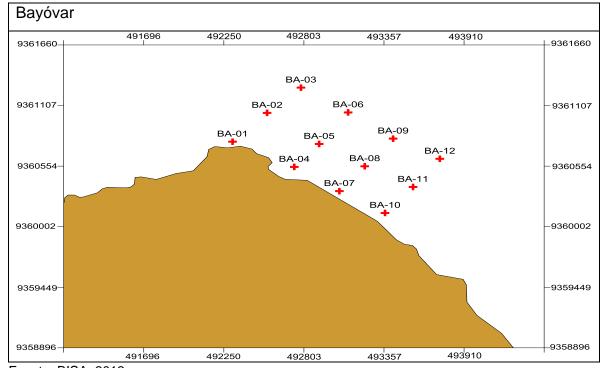


Figura 3.4.3.2-2. Ubicación de la zona de estudio

Fuente: BISA, 2012

3.4.3.2.1.4 Metodología

A. Muestreo de comunidades hidrobiológicas

a.1 Fitoplancton

La obtención de las muestras del fitoplancton se realizaron mediante redes estándares de 75 µm de abertura de malla. Por su parte, las muestras de agua para un análisis cualitativo y cuantitativo de fitoplancton se obtuvieron en la superficie.

Para el análisis cualitativo, la obtención de muestras de fitoplancton se realizó mediante un arrastre de la red durante 5 minutos a velocidad mínima (3 nudos). A la muestra obtenida se le agregó 10 mL de formalina neutralizada con bórax al 20%. La obtención de los volúmenes de plancton es por el método de centrifugación a 2400 rpm durante 5 minutos, siguiendo las recomendaciones dadas en la Reunión del Programa de Plancton (UNESCO, 1981).

V = vol. centrifugado/K

 $K = \pi r^2 h$

V = vol. centrifugado/ 6,6245

Los resultados así obtenidos se expresaron en mililitros de plancton por metro cúbico de agua de mar filtrada (ml/m³).

Las muestras obtenidas fueron observadas al estereoscopio y microscopio compuesto; determinándose la comunidad fitoplanctónica (especies de todos los grupos observados, presencia o ausencia y predominancia de los grandes grupos del plancton). A continuación, se realizó un listado de todas las especies que se registraronn en cada muestra, determinándose la abundancia relativa de las especies presentes de acuerdo a la escala según metodología dada en Rojas de Mendiola *et al.* (1985): 4=muy abundante, 3=abundante, 2=escaso, 1=presente y 0=ausente.

Para el análisis cuantitativo de fitoplancton, se tomó una muestra de 200 mL de agua de mar, la cual fue transportada al laboratorio analítico dentro de un frasco conteniendo 10 mL de formalina al 20%. Allì, las muestras fueron homogenizadas suavemente para luego colocar una submuestra en cilindros de sedimentación de 50 mL, por espacio de 24 hrs. Los conteos de las especies presentes se realizò bajo un microscopio invertido con aumentos de 40x y 10x como objetivos y de 12x de ocular aplicando la metodología de Uthermohl.

Los organismos menores de 20 µm y muy abundantes son contados en un área de 2 ml, mientras que los organismos mayores a 20 µm y poco abundantes son contados en toda la cámara. Los resultados obtenidos se expresan en número de células por litro (N° cél/L).

a.2 Zooplancton

Las muestras del zooplancton se obtuvieron mediante una red estándar de 50 cm de diámetro de boca con un largo de 1,50 m y con 300 µm de abertura de malla. La malla fue arrastrada superficialmente con la lancha en movimiento a una velocidad promedio de 3 nudos durante 5 minutos. En la boca de la red se colocó un medidor de flujo con el propósito de saber la cantidad de agua filtrada y poder expresar los resultados en 1000 m³. Las muestras tomadas fueron depositadas en frascos de 400 mL, luego fijadas con formaldehído, rotuladas y transportadas al laboratorio análitico. Las muestras son filtradas y depositadas en placas Petri de diversos tamaños. El análisis de las muestras se realizó en el laboratorio Inspectorate.

a.3 Bentos

La colecta de muestras para la comunidad del macrozoobentos se realizó en 12 estaciones submareales de Bayóvar. Para el muestreo se utilizó una draga de tipo Van Veen de 0,05 m². El número de réplicas por estación fue de 3. Luego de extraída la draga, el sedimento fue tamizado con una malla de 0,5 mm, la muestra se almacenó en frascos con formalina al 7% neutralizada con bórax al 20% para su posterior análisis en el laboratorio análitico.

El análisis primario del macrozoobentos consistió en:

- Determinación de la composición de especies, llegando hasta el menor taxón posible. Utilizando un microscopio estereoscopio, un microscopio compuesto.
- Densidad (Nº individuos/m²), para lo cual se determinará el número de individuos por especie, por estación, para lo cual se promedia los valores de las réplicas por estación y se extrapola a m² con el fin de comparar con estudios realizados en comunidades bentonicas.
- Biomasa (g.PH/m2), obtenida en una balanza analítica con cuatro decimales de precisión, tomándose en cuenta el peso húmedo (PH).

a.3 Necton

Con el objetivo de conocer y Bayóvar se realizaron 2 evaluaciones (abril y julio). Se determinó mediante el método de pesca experimental la composición de especies por zona, la estructura de tallas de los especímenes por lance y se determinó mediante el índice de Shannon y Wiener la diversidad íctica de ambas zonas.

Con la ayuda de la experiencia de pescadores artesanales, se ubicaron las zonas tradicionales, con mayor probabilidad de pesca, dentro del área de evaluación. Las faenas de pesca experimental se realizaron con redes de enmalle, conocidas como cortinas. Las dimensiones de la red fueron: 178 m de largo, 7 m de altura y tamaño de malla de 2,5 pulgadas. Las redes, se dejaron tendidas en la columna de agua, por espacio de 5 horas durante el día y 11 horas durante la noche.

La primera evaluación de pesca experimental se llevó a cabo en abril entre los días 23 al 29 de abril del 2012, mientras que la segunda evaluación se realizó entre el 2 y 6 de julio. En la primera y segunda evaluación se realizaron tres lances frente a Bayóvar.

La identificación de peces se realizó utilizando La Clave para identificar los peces marinos del Perú (Chirichigno, 1998). La determinación de tamaño se realizó con un ictiómetro.

B. Análisis de datos

Con los datos obtenidos en las evaluaciones biológicas se realizó el análisis de las comunidades acuáticas, que incluyó la determinación de especies y densidad de individuos. Para los aspectos cuantitativos de la estructura comunitaria se consideran el número de especies, densidad y biomasa media por estación de muestreo. Además se cuantificó el grado de heterogeneidad de las comunidades hidrobiológicas a través de medidas de diversidad. Para los cálculos univariados y

multivariados se utilizó el software PRIMER 6 (Plymouth Routines In Multivariate

Ecological Research)

Índices de comunidad de especies.

Para el análisis se han considerado cuatro índices de heterogeneidad, que es

aplicado a las comunidades biológicas: Shannon-Wiener, Índice de Simpson,

Equidad de Pielou y Riqueza de Especies (Margalef). Estos índices cuantifican la

abundancia proporcional, la Equitabilidad y la riqueza de las especies en las

estaciones estudiadas. Los índices obtenidos son utilizados para caracterizar la

estructura comunitaria de los ensamblajes biológicos.

Índice de Diversidad de Shannon-Wiener

Este Índice teórico es el más usado por ajustarse mejor a la distribución de los

organismos en la naturaleza, pudiendo realizarse comparaciones estadísticas.

Esta expresión se acomoda a la distribución habitual de las numerosas

asociaciones de especies, por lo cual permite la aplicación de métodos

estadísticos diversos (Clarke, 2001).

$$H' = -\sum (n_i / N) \log_2(n_i / N)$$

Donde:

H' = Índice de Diversidad de Shannon-Wiener

ni = número de individuos de la especie i

N = número total de individuos

Índice de Diversidad de Simpson.

Manifiesta la probabilidad de que dos individuos tomados al azar de una muestra

sean de la misma especie. Está fuertemente influido por la importancia de las

especies más dominantes (Magurran, 1988). Como el índice de Simpson mide la

Capítulo III - 728

dominancia dentro de una comunidad, la diversidad puede calcularse como 1- λ (Lande, 1996).

$$D = 1 - \Sigma(Pi)^2 = 1 - \lambda$$

Una característica de Simpson es su sensibilidad a los cambios en las especies abundantes. Es útil para el monitoreo ambiental, que miden la variación de las especies más abundantes por alguna perturbación. Los valores de la diversidad según Simpson se dan dentro de una escala de 0 a 1; siendo mayor cuando se aproxima a uno y menor al acercarse a cero, lo que indicaría mayor dominancia.

Índice de Equitatividad de Pielou.

El índice de equitatividad es un componente importante de los índices de diversidad. Se realiza empleando:

Donde S = es el número máximo de especies en la muestra.

Este índice expresa como los individuos de cada especie están distribuidos, para lo cual los individuos son divididos entre los taxa presentes. Su valor va de 0 a 1, de forma que 1 corresponde a situaciones donde todas las especies son igualmente abundantes.

Índice de riqueza de Margalef

Mide la riqueza de especies y es uno de índices más usados, ya que proporcionan una expresión compresible e instantánea de la diversidad. (Magurran 1986).

$$d = (S -1) / log_2 N$$

Donde:

S: número de espécies.

N: número de indivíduos.

Este índice permite estimar la riqueza de especies con base en la distribución numérica de los individuos de las diferentes especies, en función del número de individuos existentes en la muestra analizada. (teórico). Valores inferiores a 2.0 son considerados como ecosistemas con baja riqueza (producida por efectos antropogénicos).

Análisis de similaridad.

Las estaciones fueron comparadas para definir áreas con similar composición taxonómica. Para ello se analizó una matriz de densidad correspondiente a la abundancia de cada taxa por estación evaluada, empleando como medida de disimilitud el índice de Bray-Curtis (1957) y el método de la media ponderada para construir el dendrograma (UPGMA) según Figueroa (2003).

El índice de similaridad de Bray-Curtis fue usado para determinar el grado de semejanza o diferencia entre las estaciones de muestreo:

$$BC = \sum_{j=n}^{n} |X_{1j} - X_{2j}| / \sum_{j=n}^{n} (X_{1j} - X_{2j})$$

Donde: BC = Coeficiente de Distancia de Bray–Curtis.

 Σ = sumatoria (desde 1 hasta n).

X_{1i} = abundancia de la especie j colectada en la estación 1.

 X_{2j} = abundancia de la especie j colectada en la estación 2.

| | = valor absoluto.

La matriz obtenida del análisis de similaridad de Bray-Curtis es sometida a un análisis multivariado de clasificación usando el método de agrupamiento UPGMA (Sneath y Sokal, 1973).

3.4.3.2.1.5 Resultados

Los informes de ensayo del laboratroio mostrándolos resultados de los monitoreos realizados en ambas campañas se adjuntan en el **Anexo 3-9.**

A. Comunidad del fitoplancton

a.1 Resultados cualitativos de la comunidad de Filtoplacton

El análisis cualitativo de la muestra indica que el plancton evaluado en la zona de Bayóvar los valores de plancton fueron fluctuando desde 0,29 ml /m³ en la estación BA-01 hasta 2,16 ml /m³ en la estación BA-09.

Como se sabe, la costa peruana tiene una biomasa planctónica promedio de 3,0 ml/m³ dentro de las 60 millas náuticas de la costa y de 5,0 ml/m³ a menores distancias de 30 millas náuticas en condiciones normales (Rojas de Mendiola *et al.*1985).

Normalmente el volumen de plancton representa la biomasa del fitoplancton dentro de las 30 millas frente a la costa. La dinámica de la biomasa planctónica en el mar peruano refleja una estacionalidad en periodos normales con los mayores valores en primavera y parte del otoño.

Durante los años 1972-73, 1976, 1982-83, 1992-93 y 1997-98, se observó un decremento en los volúmenes del plancton alcanzando valores <1,0 mL.m⁻³. Por otra parte, durante los eventos fríos LN (1977, 1985, 1988-89, 1996 y 1999), (Sánchez 2000) se registró biomasas planctónicas >3,0 mL.m⁻³, relacionadas con

la intensificación de los afloramientos costeros. En el cuadro 3.4.3.2-2 se puede apreciar el volumen de plancton superficial encontrado en el área de estudio.

Cuadro 3.4.3.2-2. Volumen de plancton superficial (ml/m³) de las estaciones evaluadas

Bayóvar	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
	0,29	0,94	0,77	0,60	1,06	0,94	0,72	1,60	2,16	0,80	0,54	1,21

Fuente: BISA, 2012

Composición especiológica

El Cuadro 3.4.3.2-3 nuestra el análisis cualitativo de Fitoplancton para las dos épocas de Abril y Julio.

Cuadro 3.4.3.2-3. Análisis cualitativo de Fitoplancton, zona de estudio Bayóvar. (Ausente 0, Presente 1, Escaso 2, Abundante 3, Muy abundante 4)

Abril

PHYLUM	CLASE	ORDEN	FAMILIA	Género / especie	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06
Ochrophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Asterionellopsis glacialis	0	0	1	0	0	0
Ochrophyta	Bacillariophyceae	Hemiaulales	Hemiaulaceae	Cerataulina pelagica	0	0	0	0	1	0
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros affinis	1	1	0	1	1	1
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros curvisetus	0	0	0	1	0	0
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros debilis	1	1	1	1	1	2
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros didymus	2	2	3	1	2	3
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros lauderi	1	0	1	0	1	1
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros lorenzianus	1	1	0	0	0	1
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros socialis	0	1	0	0	0	1
Ochrophyta	Coscinodiscophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus granii	1	1	0	1	1	1
Ochrophyta	Coscinodiscophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus perforatus	1	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus wailesii	1	1	0	1	0	0
Ochrophyta	Bacillariophyceae	Bacillariales	Bacillariaceae	Cylindrotheca closterium	1	1	0	0	1	0
Ochrophyta	Bacillariophyceae	Thalassiosirales	Skeletonemaceae	Detonula pumila	1	1	1	1	0	1
Ochrophyta	Bacillariophyceae	Lithodesmidales	Lithodesmiaceae	Ditylum brightwellii	1	2	1	2	1	1
Ochrophyta	Bacillariophyceae	Surirellales	Entomoneidaceae	Entomoneis alata v. alata	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Hemiaulales	Hemiaulaceae	Eucampia zoodiacus	1	1	1	1	0	1
Ochrophyta	Bacillariophyceae	Rhizosoleniales	Rhizosoleniaceae	Guinardia delicatula	0	0	0	0	1	0
Ochrophyta	Bacillariophyceae	Naviculales	Pleurosigmataceae	Gyrosigma sp.	0	0	0	0	0	1
Ochrophyta	Bacillariophyceae	Bacillariales	Bacillariaceae	Fragilariopsis doliolus	1	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Hemiaulales	Hemiaulaceae	Hemiaulus sinensis	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Lithodesmiales	Lithodesmiaceae	Helicotheca tamesis	0	0	0	1	0	0
Ochrophyta	Bacillariophyceae	Leptocylindrales	Leptocylindraceae	Leptocylindrus danicus	0	0	1	0	1	1
Ochrophyta	Bacillariophyceae	Thalassionematales	Thalassionemataceae	Lioloma sp.	0	1	0	0	0	0
Ochrophyta	Bacillariophyceae	Lithodesmidales	Lithodesmiaceae	Lithodesmium undulathum	1	1	1	0	1	1
Ochrophyta	Bacillariophyceae	Naviculales	Naviculaceae	Navicula sp.	0	0	0	0	1	0
Ochrophyta	Bacillariophyceae	Naviculales	Pleurosigmataceae	Pleurosigma sp.	1	1	1	1	1	2
Ochrophyta	Bacillariophyceae	Thalassiosirales	Skeletonemaceae	Skeletonema costatum	1	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Thalassionemales	Thalassionemataceae	Thalassionema nitzschioides	0	0	1	0	0	1

DUVLUM	CLACE	ODDEN	FAMILIA	Cánava / consoir	DA 04	DA 00	DA 00	DA 04	DA OF	DA OC
PHYLUM	CLASE	ORDEN	FAMILIA	Género / especie	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06
Ochrophyta	Bacillariophyceae	Thalassionemales	Thalassionemataceae	Thalassiosira subtilis	1	1	1	0	0	0
Ochrophyta	Bacillariophyceae	Thalassiosirales	Thalassiosiraceae	Thalassiosira sp.	0	0	0	0	0	0
Ochrophyta	Dictyochophyceae	Dictyochales	Dictyochaceae	Dicthyiocha fibula	0	0	0	0	0	1
Myzozoa	Dinophyceae	Gonyaulacales	Ceritiaceae	Ceratium dens	0	0	1	0	1	1
Myzozoa	Dinophyceae	Gonyaulacales	Ceritiaceae	Ceratium furca	0	1	1	0	1	1
Myzozoa	Dinophyceae	Gonyaulacales	Ceritiaceae	Ceratium fusus	0	0	1	0	0	1
Myzozoa	Dinophyceae	Dinophysiales	Dinophysiaceae	Dinophysis caudata	0	0	0	0	1	1
Myzozoa	Dinophyceae	Gonyaulacales	Gonyaulacaceae	Gonyaulax sp.	0	0	1	0	0	0
Myzozoa	Dinophyceae	Prorocentrales	Prorocentraceae	Prorocentrum arcuatum	0	0	1	0	0	1
Myzozoa	Dinophyceae	Prorocentrales	Prorocentraceae	Prorocentrum gracile	0	0	0	0	0	1
Myzozoa	Dinophyceae	Prorocentrales	Prorocentraceae	Prorocentrum micans	0	0	1	0	1	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium claudicans	0	1	1	0	0	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium conicum	0	0	0	0	0	0
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium crassipes	0	1	0	0	0	0
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium depressum	0	1	1	0	0	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium excentricum	0	1	1	0	0	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium oceanicum	0	0	0	0	0	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium pentagonum	0	0	0	0	1	1

PHYLUM	CLASE	ORDEN	FAMILIA	Género / especie	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
Ochrophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Asterionellopsis glacialis	0	1	0	0	0	1
Ochrophyta	Bacillariophyceae	Hemiaulales	Hemiaulaceae	Cerataulina pelagica	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros affinis	1	0	1	1	0	1
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros curvisetus	1	1	0	1	0	0
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros debilis	1	1	3	1	1	1
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros didymus	1	2	4	2	2	1
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros lauderi	1	1	1	0	0	1
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros lorenzianus	0	0	0	1	1	0
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros socialis	0	0	3	0	1	1
Ochrophyta	Coscinodiscophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus granii	0	1	1	1	1	1
Ochrophyta	Coscinodiscophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus perforatus	1	1	1	0	1	1

PHYLUM	CLASE	ORDEN	FAMILIA	Género / especie	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
Ochrophyta	Bacillariophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus wailesii	0	0	1	1	0	0
Ochrophyta	Bacillariophyceae	Bacillariales	Bacillariaceae	Cylindrotheca closterium	0	1	1	0	0	0
Ochrophyta	Bacillariophyceae	Thalassiosirales	Skeletonemaceae	Detonula pumila	1	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Lithodesmidales	Lithodesmiaceae	Ditylum brightwellii	0	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Surirellales	Entomoneidaceae	Entomoneis alata v. alata	0	0	1	0	1	0
Ochrophyta	Bacillariophyceae	Hemiaulales	Hemiaulaceae	Eucampia zoodiacus	1	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Rhizosoleniales	Rhizosoleniaceae	Guinardia delicatula	0	1	0	0	0	0
Ochrophyta	Bacillariophyceae	Naviculales	Pleurosigmataceae	Gyrosigma sp.	0	0	0	0	1	1
Ochrophyta	Bacillariophyceae	Bacillariales	Bacillariaceae	Fragilariopsis doliolus	0	0	0	1	0	0
Ochrophyta	Bacillariophyceae	Hemiaulales	Hemiaulaceae	Hemiaulus sinensis	0	0	1	0	0	0
Ochrophyta	Bacillariophyceae	Lithodesmiales	Lithodesmiaceae	Helicotheca tamesis	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Leptocylindrales	Leptocylindraceae	Leptocylindrus danicus	0	0	1	1	1	1
Ochrophyta	Bacillariophyceae	Thalassionematales	Thalassionemataceae	Lioloma sp.	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Lithodesmidales	Lithodesmiaceae	Lithodesmium undulathum	1	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Naviculales	Naviculaceae	Navicula sp.	0	0	1	1	0	0
Ochrophyta	Bacillariophyceae	Naviculales	Pleurosigmataceae	Pleurosigma sp.	0	1	1	0	2	2
Ochrophyta	Bacillariophyceae	Thalassiosirales	Skeletonemaceae	Skeletonema costatum	1	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Thalassionemales	Thalassionemataceae	Thalassionema nitzschioides	0	0	1	1	0	1
Ochrophyta	Bacillariophyceae	Thalassionemales	Thalassionemataceae	Thalassiosira subtilis	0	0	1	0	0	1
Ochrophyta	Bacillariophyceae	Thalassiosirales	Thalassiosiraceae	Thalassiosira sp.	0	0	1	1	0	1
Ochrophyta	Dictyochophyceae	Dictyochales	Dictyochaceae	Dicthyiocha fibula	0	1	0	0	1	0
Myzozoa	Dinophyceae	Gonyaulacales	Ceritiaceae	Ceratium dens	0	1	0	0	1	0
Myzozoa	Dinophyceae	Gonyaulacales	Ceritiaceae	Ceratium furca	1	1	0	1	1	0
Myzozoa	Dinophyceae	Gonyaulacales	Ceritiaceae	Ceratium fusus	0	1	0	1	1	1
Myzozoa	Dinophyceae	Dinophysiales	Dinophysiaceae	Dinophysis caudata	0	1	0	1	1	1
Myzozoa	Dinophyceae	Gonyaulacales	Gonyaulacaceae	Gonyaulax sp.	0	1	0	0	0	0
Myzozoa	Dinophyceae	Prorocentrales	Prorocentraceae	Prorocentrum arcuatum	0	1	0	0	1	0
Myzozoa	Dinophyceae	Prorocentrales	Prorocentraceae	Prorocentrum gracile	0	0	0	0	1	0
Myzozoa	Dinophyceae	Prorocentrales	Prorocentraceae	Prorocentrum micans	0	0	0	1	1	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium claudicans	0	1	0	0	1	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium conicum	0	1	0	1	1	0

PHYLUM	CLASE	ORDEN	FAMILIA	Género / especie	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium crassipes	0	0	0	0	0	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium depressum	1	1	0	0	1	0
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium excentricum	0	1	0	1	0	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium oceanicum	0	0	0	0	0	0
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium pentagonum	0	0	0	0	1	0

Fuente: BISA, 2012

Julio

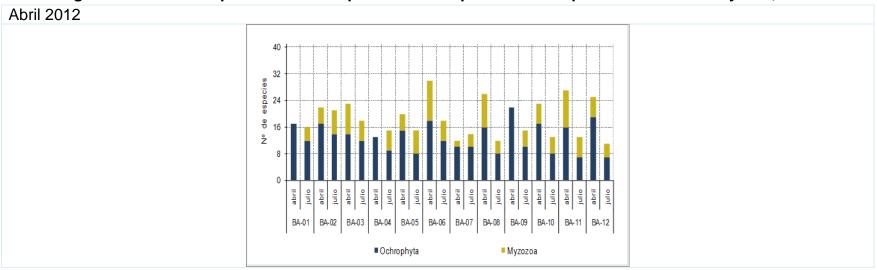
PHYLUM	CLASE	ORDEN	FAMILIA	Género / especie	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros curvisetus	1	0	1	1	0	0
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros debilis	0	0	0	0	0	1
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros didymus	0	1	0	0	0	0
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros lauderi	0	0	0	1	0	0
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros lorenzianus	1	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus granii	1	1	0	1	0	1
Ochrophyta	Bacillariophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus perforatus	1	1	1	0	1	1
Ochrophyta	Bacillariophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus wailesii	1	1	1	0	1	2
Ochrophyta	Bacillariophyceae	Bacillariales	Bacillariaceae	Cylindrotheca closterium	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Thalassiosirales	Skeletonemaceae	Detonula pumila	2	3	3	2	2	4
Ochrophyta	Bacillariophyceae	Lithodesmidales	Lithodesmiaceae	Ditylum brightwellii	1	0	1	0	0	0
Ochrophyta	Bacillariophyceae	Hemiaulales	Hemiaulaceae	Eucampia zoodiacus	1	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Striatellales	Striatellaceae	Grammatophora sp.	0	1	1	0	1	0
Ochrophyta	Bacillariophyceae	Naviculales	Pleurosigmataceae	Gyrosigma sp.	0	1	0	0	0	0
Ochrophyta	Bacillariophyceae	Lithodesmiales	Lithodesmiaceae	Lithodesmium undulathum	1	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Triceratiales	Triceratiaceae	Odontella aurita	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Thalassiosirales	Thalassiosiraceae	Planktoniella sol	0	1	0	0	0	0
Ochrophyta	Bacillariophyceae	Naviculales	Pleurosigmataceae	Pleurosigma sp.	0	1	0	1	0	0
Ochrophyta	Bacillariophyceae	Bacillariales	Bacillariaceae	Pseudonitzschia pungens	1	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Melosirales	Stephanopyxidaceae	Stephanopyxis turris	1	1	1	0	1	1
				Thalassionema						
Ochrophyta	Bacillariophyceae	Thalassionematales	Thalassionemataceae	nitzschioides	1	0	1	0	0	1
Ochrophyta	Bacillariophyceae	Thalassiosirales	Thalassiosiraceae	Thalassiosira angulata	0	1	1	1	0	0
Ochrophyta	Bacillariophyceae	Thalassiosirales	Thalassiosiraceae	Thalassiosira sp.	0	0	0	0	0	1

PHYLUM	CLASE	ORDEN	FAMILIA	Género / especie	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06
Ochrophyta	Dictyochophyceae	Dictyochales	Dictyochaceae	Octactis octonaria	0	0	0	0	0	1
Myzozoa	Dinophyceae	Gonyaulacales	Ceritiaceae	Ceratium dens	1	0	0	1	1	1
Myzozoa	Dinophyceae	Gonyaulacales	Ceritiaceae	Ceratium furca	1	1	1	1	1	1
Myzozoa	Dinophyceae	Gonyaulacales	Ceritiaceae	Ceratium fusus	0	0	0	0	0	0
Myzozoa	Dinophyceae	Dinophysiales	Dinophysiaceae	Dinophysis caudata	0	1	1	0	0	0
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium claudicans	0	0	0	1	1	0
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium conicum	1	1	1	0	1	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium crassipes	0	0	0	0	0	0
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium depressum	1	1	1	1	1	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium pentagonum	0	1	1	1	1	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium subinerme	0	1	1	1	1	1
Myzozoa	Dinophyceae	Peridiniales	Peridinaceae	Scrippsiella trochoidea	0	1	0	0	0	0

PHYLUM	CLASE	ORDEN	FAMILIA	Género / especie	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros curvisetus	1	0	0	1	1	1
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros debilis	1	0	1	0	1	0
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros didymus	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros lauderi	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Chaetocerotales	Chaetocerotaceae	Chaetoceros lorenzianus	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus granii	0	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus perforatus	1	0	0	1	0	0
Ochrophyta	Bacillariophyceae	Coscinodiscales	Coscinodiscaceae	Coscinodiscus wailesii	1	1	1	1	1	2
Ochrophyta	Bacillariophyceae	Bacillariales	Bacillariaceae	Cylindrotheca closterium	1	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Thalassiosirales	Skeletonemaceae	Detonula pumila	3	3	3	3	3	3
Ochrophyta	Bacillariophyceae	Lithodesmidales	Lithodesmiaceae	Ditylum brightwellii	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Hemiaulales	Hemiaulaceae	Eucampia zoodiacus	1	1	1	0	0	0
Ochrophyta	Bacillariophyceae	Striatellales	Striatellaceae	Grammatophora sp.	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Naviculales	Pleurosigmataceae	Gyrosigma sp.	1	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Lithodesmiales	Lithodesmiaceae	Lithodesmium undulathum	0	1	1	1	1	1
Ochrophyta	Bacillariophyceae	Triceratiales	Triceratiaceae	Odontella aurita	1	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Thalassiosirales	Thalassiosiraceae	Planktoniella sol	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Naviculales	Pleurosigmataceae	Pleurosigma sp.	0	0	0	0	0	0
Ochrophyta	Bacillariophyceae	Bacillariales	Bacillariaceae	Pseudonitzschia pungens	0	1	1	0	0	0
Ochrophyta	Bacillariophyceae	Melosirales	Stephanopyxidaceae	Stephanopyxis turris	1	1	1	1	0	1
Ochrophyta	Bacillariophyceae	Thalassionematales	Thalassionemataceae	Thalassionema	0	0	0	0	0	0

PHYLUM	CLASE	ORDEN	FAMILIA	Género / especie	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
				nitzschioides						
Ochrophyta	Bacillariophyceae	Thalassiosirales	Thalassiosiraceae	Thalassiosira angulata	0	0	1	0	0	0
Ochrophyta	Bacillariophyceae	Thalassiosirales	Thalassiosiraceae	Thalassiosira sp.	0	0	0	0	0	0
Ochrophyta	Dictyochophyceae	Dictyochales	Dictyochaceae	Octactis octonaria	0	0	0	0	0	0
Myzozoa	Dinophyceae	Gonyaulacales	Ceritiaceae	Ceratium dens	0	1	0	0	0	0
Myzozoa	Dinophyceae	Gonyaulacales	Ceritiaceae	Ceratium furca	1	1	1	1	0	1
Myzozoa	Dinophyceae	Gonyaulacales	Ceritiaceae	Ceratium fusus	0	0	0	0	1	0
Myzozoa	Dinophyceae	Dinophysiales	Dinophysiaceae	Dinophysis caudata	0	0	1	1	1	0
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium claudicans	0	0	1	1	0	0
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium conicum	1	0	0	0	0	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium crassipes	0	0	0	0	1	0
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium depressum	1	0	1	1	1	1
				Protoperidinium						
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	pentagonum	1	1	0	0	1	1
Myzozoa	Dinophyceae	Peridiniales	Protoperidiniaceae	Protoperidinium subinerme	0	1	1	1	1	0
Myzozoa	Dinophyceae	Peridiniales	Peridinaceae	Scrippsiella trochoidea	0	0	0	0	0	0

El número de especies reportadas en el mes de abril fue de 47. El phylum Ochrophyta constituyó el 68,09% del total y el 31,9% correspondió al phylum Myzozoa. Por otro lado, las especies con frecuencias del 100% fueron las diatomeas: *Chaetoceros didymus* (la más abundante), *Chaetoceros debilis, Skeletonema costatum.*


En julio se reportó 35 especies, de las cuales 24 especies (68.6%) pertenecieron al phylum Ochrophyta y 11 especies (31.4%) del phylum Myzozoa. La especie presente en todas las estaciones (frecuencia de 100%) fue: *Detonula pumila,* diatomea pequeña de alta tasa de reproducción que fue la más abundante. El grupo de diatomeas con frecuencias del 91.7% fueron: *Coscinodiscus wailesii,* y *Lithodesmium undulathum.* En esta temporada se reportó la presencia de dinoflagelados que alcanzaron frecuencias de 91.7% como: *Ceratium furca* y *Protoperidinium depressum.* El mayor número de especies se registra en abril.

Se observa una mayor contribución en número de especies por parte de los dinoflagelados. En ambientes oceánicos el fitoplancton estaría representado principalmente por los dinoflagelados, así como diatomeas grandes con baja tasa de asimilación y reproducción, relacionada estrechamente a la intensidad de los afloramientos con un periodo de transición espacial y temporal de ambientes turbulentos y ambientes más estables en la columna de agua.

Abril 2012 Julio 2012 40 40 secies ed 24 32 24 Q g å BA-03 BA-06 BA-08 BA-09 BA-04 ■ Ochrophyta Myzozoa ■ Ochrophyta Myzozoa

Figura 3.4.3.2-3. Composición de Especies del Fitoplancton Zona de Bayóvar, abril 2012.

a.2 Densidades

La densidad fue evaluada en tres niveles de profundidad: en superficie, a 10 m y a 20 m de profundidad.

La densidad superficial de fitoplancton en Bayóvar durante el mes de abril tuvo un promedio de 1 427 células /L. La menor densidad fue 20 células /L (estación BA-05) y la máxima fue 6 140 células /L (estación BA-03). Las especies Chaetoceros socialis y Chaetoceros lauderi fueron las más abundantes. Por su parte, en el mes de julio la densidad promedio a nivel superficial fue 165 células /L; el mínimo valor fue de 3 células /L (estación BA-10), hasta 587 celulas/L (estación BA-09). Ver cuadro 3.4.3.2-4 y figura 3.4.3.2-5.

Cuadro 3.4.3.2-4. Densidades del Fitoplancton superficial (Número de individuos/mL) Zona de Bayóvar, 2012

Estación	temporada	Ochrophyta	Cryptophyta	Haptophyta	TOTAL
BA-01	Abril	1100	0	20	1120
	Julio	81	0	0	81
BA-02	Abril	0	0	60	60
	Julio	17	0	0	17
BA-03	Abril	6140	0	0	6140
DA-03	Julio	120	0	0	120
BA-04	Abril	980	520	0	1500
BA-04	Julio	129	0	1	130
BA-05	Abril	0	0	20	20
BA-03	Julio	535	0	0	535
BA-06	Abril	440	0	40	480
B/(00	Julio	95	0	0	95
BA-07	Abril	300	0	40	340
	Julio	78	0	0	78
BA-08	Abril	1220	60	0	1280
	Julio	66	0	0	66
BA-09	Abril	2320	20	20	2360
BA-03	Julio	587	0	0	587
BA-10	Abril	0	0	100	100
BA-10	Julio	3	0	0	3
BA-11	Abril	2920	0	20	2940
	Julio	197	0	0	197
BA-12	Abril	760	0	20	780
DA-12	Julio	69	0	0	69

A 10 m de profundidad, la densidad durante el mes de abril tuvo un promedio de 223 células /L. La mínima densidad fue 20 células /L (estación BA-08 y BA-12) y la máxima densidad se registró en la estación BA-05 con 660 células /L. La especie *Chaetoceros socialis* fue la especie más abundante (60.7%). Por su parte, en el mes de julio la densidad promedio a 10m fue de 237 células /L. En la estación BA-12 no se encontró organismos del fitoplancton. La máxima densidad registrada fue 1 082 células /L (estacion BA-03). *Detonula pumila* fue responsable del 99.6% de la abundancia a 10 m en el mes de julio. Ver cuadro 3.4.3.2-5 y Figura 3.4.3.2-6.

Cuadro 3.4.3.2-5. Densidades del Fitoplancton a 10 m (Número de individuos/mL) Zona de Bayóvar, 2012

Estación	Densidad	Ochrophyta	Cryptophyta	Haptophyta	Myzozoa	Euglenozoa	Total
BA-02	abril	160	0	20	0	0	180
	julio	122	0	0	0	0	122
DA 00	abril	0	0	60	0	0	60
BA-03	julio	1082	0	0	0	0	1082
BA-05	abril	620	20	20	0	0	660
DA-03	julio	45	0	0	1	1	47
BA-06	abril	480	0	40	0	0	520
DA-06	julio	13	0	0	0	0	13
BA-08	abril	0	0	20	0	0	20
	julio	8	0	0	0	0	8
BA-09	abril	20	0	40	0	0	60
	julio	10	0	0	0	0	10
BA-11	abril	240	0	20	0	0	260
	julio	612	0	0	0	1	613
BA-12	abril	0	0	20	0	0	20
DA-12	julio	0	0	0	0	0	0

Fuente: BISA, 2012

A 20 m de profundidad, la densidad promedio fue de 237 células /L. Las estaciones BA-08 y BA-11 no registraron especies fitoplanctónicas a esta profundidad. La estación BA-02 fue la que presentó mayor densidad con 1 360 células /L. La especie *Chaetoceros lauderi* fue la más abundante con el 77,1%. En el mes de julio la densidad promedio a 20m fue 55 células /L. En las estaciones BA-02 y BA-12 no se encontró organismos del fitoplancton. El máximo

valor registrado fue de 119 células /L (estación BA-08). La especie *Detonula pumila* fue responsable del 96,9% de la densidad (Cuadro 3.4.3.2-6 y Figura 3.4.3.2-6).

Cuadro 3.4.3.2-6. Densidades del Fitoplancton a 20 m (Número de individuos/mL) Zona de Bayóvar

Estación	densidad	Ochrophyta	Cryptophyta	Haptophyta	Myzozoa	Euglenozoa	TOTAL
BA-02	abril	1240	80	40	0	0	1360
DA-02	julio	0	0	0	0	0	0
BA-03	abril	40	20	100	0	0	160
	julio	3	0	0	0	0	3
BA-06	abril	40	0	20	0	0	60
BA-00	julio	113	0	0	0	0	113
BA-08	abril	0	0	0	0	0	0
DA-06	julio	116	0	0	0	3	119
BA-09	abril	0	0	40	0	0	40
	julio	88	0	0	0	0	88
BA-11	abril	0	0	0	0	0	0
	julio	61	0	0	0	0	61
BA-12	abril	0	20	20	0	0	40
DA-12	julio	0	0	0	0	0	0

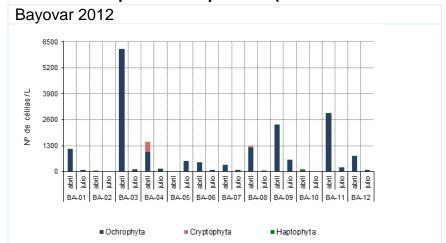
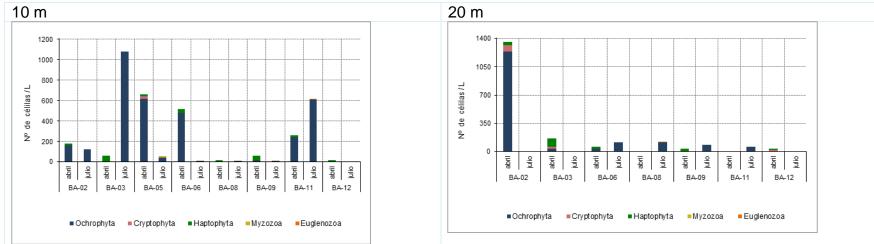



Figura 3.4.3.2-5. Densidades del fitoplancton superficial (Número de individuos/mL) zon de Bayovar

Fuente: BISA, 2012

Figura 3.4.3.2-6. Densidades del Fitoplancton a 10 y 20 m (Número de individuos/mL) Zona de Bayóvar, 2012

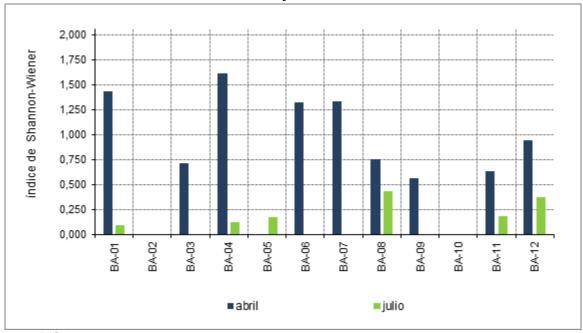
a.3 Parámetros comunitarios

Los resultados de los parámetros comunitarios de observan en el cuadro 10, El número de especies en Bayóvar fue mayor en abril con un máximo de 5 especies, mientras que en julio el máximo número de especies fue de 3 especies.

El índice de riqueza de especies de Margalef en abril varió desde 0 hasta 0.547. En julio los valores de riqueza de especies de Margalef fue 0 en varias estaciones ya que solo presentaron una especie. El máximo valor no superó 0,411. En ambos casos se muestra poca variedad indicando una comunidad con riqueza muy baja en esta temporada.

El índice de diversidad de Shannon-Wiener (H') en el mes de abril presentó valores de diversidad cero (BA-02, BA-05 y BA-10) hasta 1,616 bits/individuo (BA-04). Los resultados muestran valores de baja diversidad.

En julio los valores de diversidad promedio (0,117 bits/individuo) fueron menores respecto al promedio para el mes de abril (0,776 bits/individuo), en muchas estaciones solo se encontró una especie lo que dio un valor de diversidad de 0. La máxima diversidad reportada fue de 0,439 bits/individuo (BA-08).

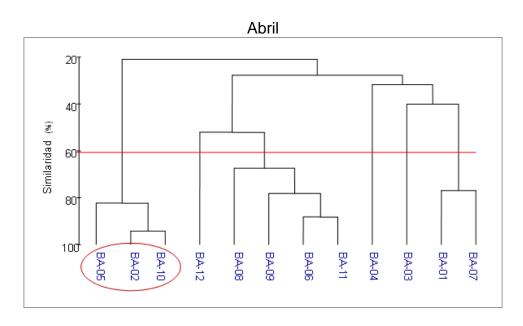

Cuadro 3.4.3.2-7. Parámetros Comunitarios del Fitoplancton Bayóvar

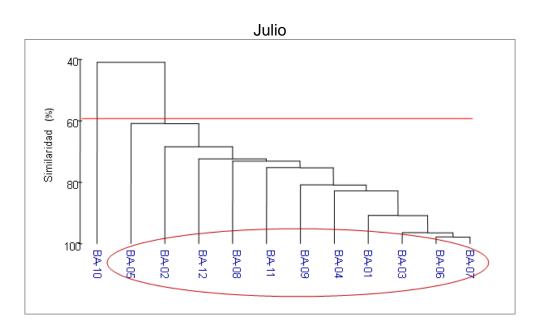
Temporada	Estación	S	N	d	J'	H'(log ₂)	1-λ
	BA-01	4	1,120	0,427	0,714	1,428	0,577
	BA-02	1	60	0,000	0,0	0,000	0,000
	BA-03	3	6,140	0,229	0,448	0,710	0,265
	BA-04	5	1,500	0,547	0,696	1,616	0,598
	BA-05	1	20	0,000	0,0	0,000	0,000
Abril	BA-06	3	480	0,324	0,836	1,325	0,569
Abili	BA-07	3	340	0,343	0,841	1,333	0,554
	BA-08	4	1,280	0,419	0,379	0,758	0,251
	BA-09	5	2,360	0,515	0,244	0,566	0,173
	BA-10	1	100	0,000	0,0	0,000	0,000
	BA-11	3	2,940	0,250	0,398	0,631	0,247
	BA-12	3	780	0,300	0,594	0,942	0,393

Temporada	Estación	s	N	d	J'	H'(log ₂)	1-λ
	BA-01	2	81	0,228	0,096	0,096	0,024
	BA-02	1	17	0,000		0,000	0,000
	BA-03	1	120	0,000	0,0	0,000	0,000
	BA-04	3	130	0,411	0,082	0,130	0,030
	BA-05	3	535	0,318	0,111	0,175	0,044
julio	BA-06	1	95	0,000	0,0	0,000	0,000
Julio	BA-07	1	78	0,000	0,0	0,000	0,000
	BA-08	2	66	0,239	0,439	0,439	0,165
	BA-09	1	587	0,000	0,0	0,000	0,000
	BA-10	1	3	0,000	0,0	0,000	0,000
	BA-11	3	197	0,379	0,119	0,189	0,050
	BA-12	2	69	0,236	0,375	0,375	0,134

Leyenda: S= número de especies, N= número de individuos, d= riqueza de especies de Margalef, J'=equitatividad de Pielou, H'= Diversidad de Shannon- Wiener y 1-λ = Diversidad de Simpson

Figura 3.4.3.2-7. Comparación de los Índices de diversidad del fitoplancton, Bayóvar




a.4 Análisis de Similaridad

Los análisis de similaridad en el mes de abril muestran la formación de tres cluster: el primer agrupamiento se da entre las estaciones BA-02, BA-05 y BA-10; el segundo agrupamiento formado por las estaciones BA-06, BA-08, BA-09, BA-11 y BA-12, que son estaciones alejadas de la orilla y al este de la zona de estudio. El tercer grupo presenta similaridad muy baja.

En el mes de julio la comunidad del fitoplancton muestra una distribucion más homogénea y no se forman agrupaciones, a diferencia de la temporada de abril donde se vio una formación de agrupaciones entre las estaciones cercanas a orillas y las que se encontraban alejadas de la orilla.

Figura 3.4.3.2-8 Dendrograma del Índice de Similaridad de Bray-Curtis del Fitoplancton, en Bayóvar

B. Comunidad del Zooplancton

b.1 Composición Especiológica

La composición de especies en abril estuvo formada por 35 especies incluyendo el ictioplancton. El phylum Crustacea fue el más diverso con 30 especies, que representan el 85.7% del total. Destacaron los copépodos *Acartia tonsa* y *Paracalanus parvus*, que se registraron en todas las estaciones.

El número promedio de especies por estación fue de 12. El mínimo número de especies registradas fue 6 especies en las estaciones BA-02 y BA-03 y el máximo fue 19 especies en la estación BA-07. Otras estaciones con mayor número de especies son: la estación BA-09 con 17 especies y las estaciones BA-05 y BA-12 con 16 especies.

Cuadro 3.4.3.2-8. Número de Especies del zooplancton en Bayóvar por phylum y por estación de Muestreo, Bayóvar 2012.

Abril

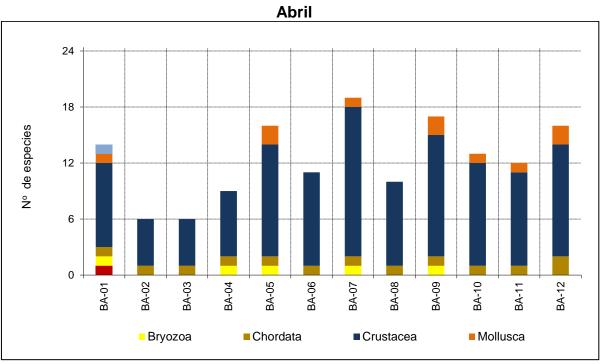
Taxas	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
Bryozoa	1	0	0	1	1	0	1	0	1	0	0	0
Chordata	1	1	1	1	1	1	1	1	1	1	1	2
Crustacea	9	5	5	7	12	10	16	9	13	11	10	12
Mollusca	1	0	0	0	2	0	1	0	2	1	1	2
TOTAL	12	6	6	9	16	11	19	10	17	13	12	16

Fuente: BISA, 2012

Julio

						4110						
Taxas	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
Bryozoa	1	0	0	0	0	1	1	0	0	0	1	0
Chaetognatha	0	0	0	0	0	0	0	1	0	1	0	0
Chordata	2	4	2	2	2	4	3	2	4	3	4	2
Crustacea	11	12	11	11	9	8	10	7	10	12	10	6
Mollusca	0	0	0	0	0	0	1	1	0	1	0	0
Cnidaria	0	0	0	0	0	1	1	1	1	1	0	0
TOTAL	14	16	13	13	11	14	16	12	15	18	15	8

En julio la composición de especies estuvo conformada por 42 especies. Los crustáceos con 27 especies constituyeron el 64.3% del total y los Chordata con 8 especies representaron el 19%.


Los copépodos *Acartia tonsa* y *Paracalanus parvus* se registraron en todas las estaciones y presentaron altas densidades. Coincidiendo con aguas mas frias, se pudo observar la gran abundancia de huevos de *Engraulis ringens*.

En julio el número de especies promedio por estación fue 14, variando desde 8 especies en la estación BA-12 hasta18 especies en la estación BA-10. Otras estaciones con mayor número de especies fueron las estaciones BA-02 y BA-07 con 16 especies.

En general la composición del zooplancton observada en el área de estudio concuerda con lo que se encuentra en zonas costeras de surgencia (Oliva, E. 1997), donde el dominio de los copépodos confirma la tendencia normal en el plancton marino.

Adicionalmente, ciertas áreas costeras pueden constituir un hábitat favorable para la sobrevivencia larval temprana del ictioplancton (Hernández, E., A. Palma & F. Ojeda. 2003).

Figura 3.4.3.2-9 Composición de Especies del zooplancton por phylum por estación de Muestreo, Bayóvar 2012.

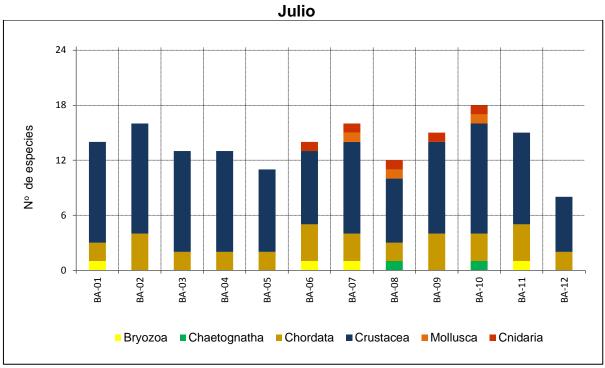


Figura 3.4.3.2-10. Comparación de composición de Especies del Zooplancton Zona de Bayóvar, 2012

b.2 Densidades

Los valores de densidad en abril fluctuaron desde 2 488 ind/100m³ hasta 38 388 ind/100m³; siendo la densidad promedio 12 310 ind/100m³. Los crustáceos fueron el grupo dominante. El copépodo *Acartia tonsa* presentó una densidad de 6 780 ind/100m³, equivalente al 55.1% del total. Otras especies abundantes fueron *Paracalanus parvus* y *Pleopis polyphemoides*.

En el mes de julio los valores de densidad fluctuaron desde 4 161 ind/100m³ hasta 36 692 ind/100m³, el promedio de densidad fue de 13 000 ind/100m³. Los crustáceos forman el grupo más abundante. Las especies dominantes fueron *Acartia tonsa y Paracalanus parvus*. También fue abundante la cantidad de huevos de *Engraulis ringens*, que presentó una abundancia de 2 259 huevos /100 m³.

Cuadro 3.4.3.2-9 Densidades del zooplancton por phylum (Número de individuos/100 m3), en el área de Bayóvar.

Abril

Phylum/ subphyllum	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
Bryozoa	48	0	0	75	44	0	25	0	11	0	0	0
Chordata	354	127	457	301	3925	67	519	1862	26	3882	1370	14
Crustacea	7526	10224	2697	7518	12021	6370	13050	36526	2429	20722	4942	10032
Mollusca	233	0	0	0	230	0	8	0	22	16	5	39
TOTAL	8161	10351	3154	7895	16220	6437	13603	38388	2489	24620	6316	10085

Fuente: BISA, 2012

Julio

Phylum/ subphyllum	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
Bryozoa	1	0	0	0	0	1	1	0	0	0	1	0
Chaetognatha	0	0	0	0	0	0	0	1	0	1	0	0
Chordata	2	4	2	2	2	4	3	2	4	3	4	2
Crustacea	11	12	11	11	9	8	10	7	10	12	10	6
Mollusca	0	0	0	0	0	0	1	1	0	1	0	0
Cnidaria	0	0	0	0	0	1	1	1	1	1	0	0
TOTAL	14	16	13	13	11	14	16	12	15	18	15	8

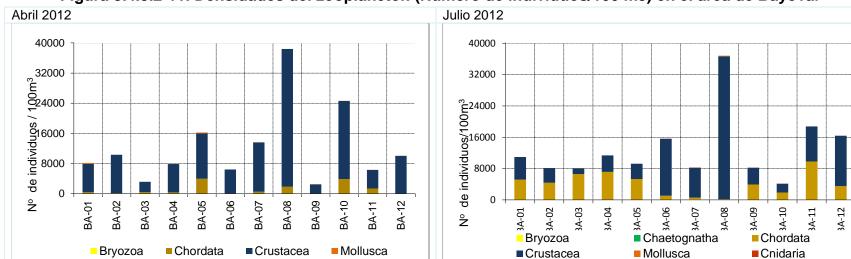
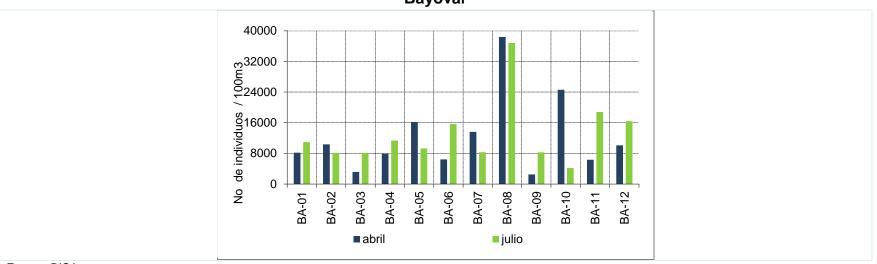



Figura 3.4.3.2-11. Densidades del zooplancton (Número de individuos/100 m3) en el área de Bayóvar

Figura 3.4.3.2-12. Comparación de Densidades del zooplancton (Número de individuos/100 m3) en el área de Bayóvar

b.3 Parámetros comunitarios:

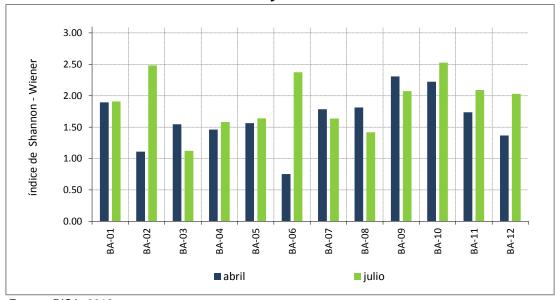
El valor del índice de riqueza de especies de Margalef en el mes de abril fluctuó desde valores de 0.541 en la estación BA-02 hasta 2.046 en la estación BA-09. En julio el índice de riqueza de Margalef fluctuó desde 0.721 (BA-12) hasta 2.160 (BA-10), los valores de riqueza ubican la zona de estudio como zona de riqueza media.

El índice de diversidad de Shannon-Wiener (H') en el mes de abril mostró valores desde 0.753 bits/ individuo. (BA-06) hasta 2.308 bits/ individuo. (BA-09) En julio los valores variaron desde 1.123 bits/ individuo. (BA-03) hasta 2.526 bits/individuo. (BA-10). Los valores de diversidad muestran valores medios incrementándose los valores de diversidad en julio, gracias al aporte del icitioplancton sobretodo a la presencia de huevos y larvas de *Engraulis ringens*.

El índice de diversidad de Simpson (1-λ) en el mes de abril fluctuó desde 0.246 en la estacion BA-06, hasta 0.748 en la estacion BA-10.

En julio los valores de diversidad de Simpson fueron mayores respecto a abril con valores que fluctuaron desde 0.351. (BA-03) hasta 0.768 (BA-02).

Cuadro 3.4.3.2-10. Parámetros Comunitarios del Zooplancton Bayóvar

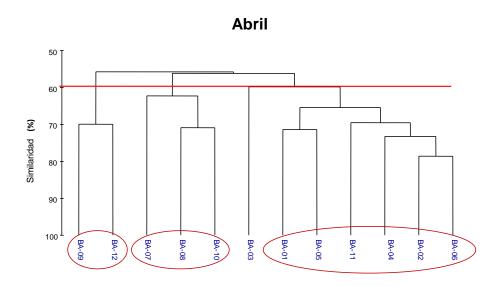

Temporada	Estación	S	N	d	J'	H'(log ₂)	1-λ
	BA-01	12	8161	1.221	0.529	1.896	0.651
	BA-02	6	10351	0.541	0.429	1.110	0.497
	BA-03	6	3154	0.621	0.598	1.546	0.560
	BA-04	9	7895	0.891	0.461	1.460	0.529
	BA-05	16	16220	1.547	0.391	1.564	0.586
Abril	BA-06	11	6437	1.140	0.218	0.753	0.246
	BA-07	19	13603	1.891	0.420	1.784	0.641
	BA-08	10	38388	0.853	0.546	1.812	0.607
	BA-09	17	2489	2.046	0.565	2.308	0.697
	BA-10	13	24620	1.187	0.601	2.223	0.748
	BA-11	12	6316	1.257	0.485	1.737	0.642

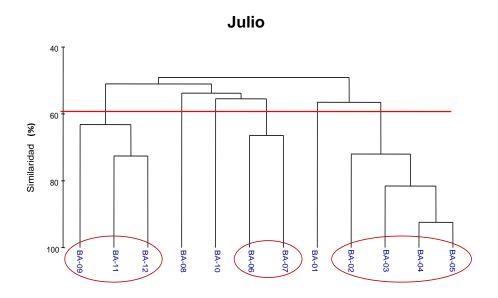
Temporada	Estación	S	N	d	J'	H'(log₂)	1-λ
	BA-12	16	10085	1.627	0.342	1.367	0.467
	BA-01	14	10949	1.398	0.502	1.910	0.660
	BA-02	16	8133	1.666	0.621	2.482	0.768
	BA-03	13	8083	1.334	0.304	1.123	0.351
	BA-04	13	11355	1.285	0.428	1.582	0.553
	BA-05	11	9260	1.095	0.474	1.641	0.595
iulio	BA-06	14	15656	1.346	0.624	2.375	0.734
julio	BA-07	17	8309	1.773	0.400	1.636	0.485
	BA-08	12	36825	1.046	0.396	1.418	0.456
	BA-09	15	8247	1.553	0.530	2.072	0.696
	BA-10	19	4164	2.160	0.595	2.526	0.735
	BA-11	15	18779	1.423	0.535	2.090	0.679
	BA-12	8	16402	0.721	0.676	2.029	0.665

Leyenda: S= número de especies, N= número de individuos, d= riqueza de especies de Margalef, J'=equitatividad de Pielou, H'= Diversidad de Shannon- Wiener y 1-λ = Diversidad de Simpson

Los valores de equidad de Pielou en abril fluctuaron desde 0.218 (BA-06) hasta 0.601 (BA-10). En julio los valores tienden a la homogeneidad siendo el menor valor reportado 0.304 (BA-03) y el máximo 0.676 (BA-12).

Figura 3.4.3.2-13. Comparación de los Índices de diversidad del zooplancton en Bayóvar


b.4 Análisis de Similaridad


Los análisis de similaridad en el mes de abril muestran la formación de tres cluster: el primer agrupamiento se da entre BA-09 y BA-12 con 69.9% de similaridad, ambas estaciones están alejadas de orilla y son de aguas profundas.

El segundo agrupamiento se da entre las estaciones BA-07, Ba-08 y BA-10, con 67.5% de similaridad. En este segundo gripo las estaciones estuvieron ubicadas cerca a la orilla y en dirección del muelle de Petroperu. El tercer agrupamiento se da entre las estaciones que se ubican en el extremo oeste, en dirección a Punta Falsa.

En julio las estaciones forman 3 clúster: el 1 grupo formado por las estaciones BA-09, BA-11 y BA-12, las cuales tienen similaridades superiores a 62.2%. Al igual que en abril se agrupa estaciones alejadas y de aguas profundas. El segundo agrupamiento incluye a las estaciones BA-06 y BA-07 con 66.4% de similaridad. El tercer agrupamiento se forma con las estaciones BA-02, BA-03, BA-04 y BA-05 con 71.1% de similaridad, estaciones ubicadas en dirección de Punta Falsa.

Figura 3.4.3.2-14. Dendrograma del Índice de Similaridad de Bray-Curtis del Zooplancton, en Bayóvar

C. Bentos

El análisis de la composición taxonómica de la macrofauna en Bayóvar en abril registró 75 especies, pertenecientes a 10 phyla. El phylum Annelida fue el mejor representado con 37 especies; el phylum Mollusca, 16 especies; Artropoda, 13 especies; Nemertino, 3 especies, mientras que los Cnidarios, Nematoda, Platyhelminthes, Phoronida, Echinodermata y Chordata presentaron 1 especie cada uno.

En abril la estación que registró mayor número de especies fue la estación BA-06 con 28 especies, seguida por la estación BA-.02 con 24 especie-05 con 23 especies. El mínimo número de especies por estación fue de 4 en las estaciones BA-04 y BA-07.

En julio en Bayóvar se registraron 71 especies, pertenecientes a 7 phyla. El phylum Annelida registró 46 especies, el phylum Artrópoda, 11 especies; Mollusca, 7 especies; Nemertea, 4 especies y los Nematoda, Platyhelminthes y Echinodermata presentaron 1 especie cada uno.

Cuadro 3.4.3.2-11. Número de Especies del macrobentos por phylum y por Estación de Muestreo en Bayóvar

Abril 2012													
Phylum	BA- 01	BA- 02	BA- 03	BA- 04	BA- 05	BA- 06	BA- 07	BA- 08	BA- 09	BA- 10	BA- 11	BA- 12	
CNIDARIA	0	0	0	0	0	1	0	0	0	0	0	0	
NEMATODA	1	0	0	0	0	1	0	1	1	0	1	1	
PLATYHELMINTHES	0	1	1	0	0	1	0	0	0	0	0	0	
NEMERTEA	0	2	1	0	1	1	0	0	1	1	1	0	
MOLLUSCA	1	4	3	1	6	2	1	0	2	3	1	2	
ANNELIDA	0	15	12	0	11	20	0	2	5	3	5	8	
PHORONIDA	0	0	1	0	1	0	0	0	0	0	0	0	
ARTHROPODA	4	2	2	2	4	2	2	2	3	4	1	1	
ECHINODERMATA	0	0	0	1	0	0	1	0	0	0	0	0	
CHORDATA	0	0	1	0	0	0	0	0	0	0	0	0	

				Abri	I 2012							
TOTAL	6	24	21	4	23	28	4	5	12	11	9	12

Julio 2012												
Phylum	BA- 01	BA- 02	BA- 03	BA- 04	BA- 05	BA- 06	BA- 07	BA- 08	BA- 09	BA- 10	BA- 11	BA- 12
NEMATODA	0	0	0	0	1	0	1	1	0	1	1	1
PLATYHELMINTHES	0	1	0	0	0	0	0	0	0	0	0	0
NEMERTEA	2	2	1	1	1	1	1	1	0	2	0	0
MOLLUSCA	1	2	2	0	2	1	0	0	2	3	1	1
ANNELIDA	6	20	9	0	21	16	10	15	5	10	10	8
PHORONIDA	6	4	0	3	3	6	2	1	0	5	0	0
ARTHROPODA	1	0	0	1	0	0	1	0	0	0	0	0
TOTAL	16	29	12	5	28	24	15	18	7	21	12	10

Figura 3.4.3.2-15a. Composición de Especies del Macrobentos por phylum en Bayóvar

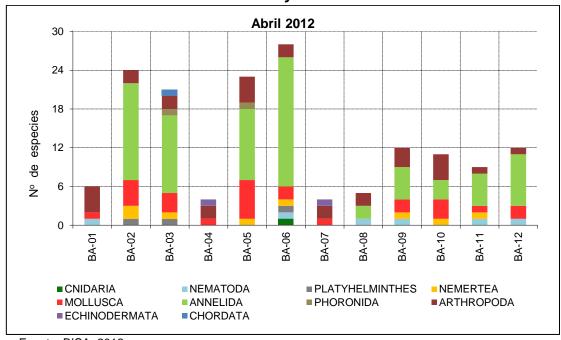


Figura 3.4.3.2-15b. Composición de Especies del Macrobentos por phylum en Bayóvar

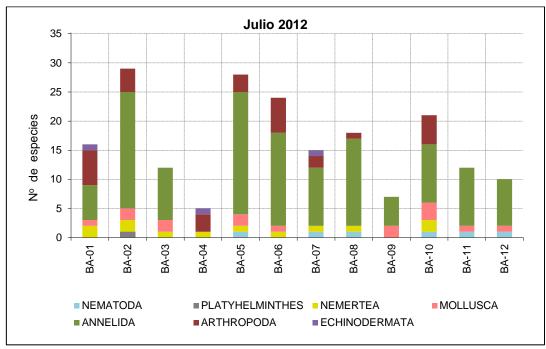
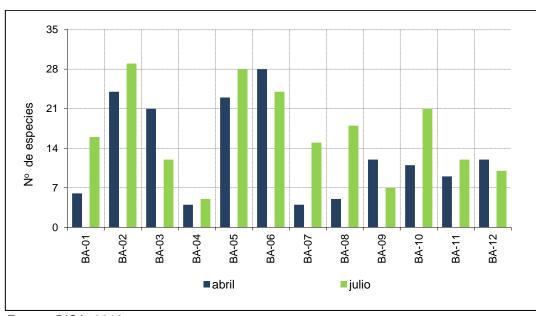



Figura 3.4.3.2-16. Comparación del número de Especies del Macrobentos, en Bayóvar, 2012

c.1 Densidades

Bayóvar

Los valores de densidad promedio en el mes de abril variaron desde 120 individuos/m² en la estación BA-07 hasta 2 446 individuos/m² en la estación BA-06. Otras estaciones con altas densidades fueron las estaciones BA-11 y BA-12 con 1507 y 1527 individuos/m², respectivamente.

La especie que presentó mayor densidad fue el nematodo Desmoronida que alcanzó densidades de 1340 individuos/m² en las estaciones BA-11 y 1287 individuos/m² en la estación BA-12.

En julio los valores de densidad variaron desde 127 individuos/m² en la estación BA-09 hasta 2773 individuos/m² en la estación BA-09. La estación BA-10 presentó una densidad de 2460 individuos/m²y la estación BA-05 1207 individuos/m².

En julio las especies que presentaron mayores densidades fueron las especies Brachiocapitella abranchiata y Mediomastus branchiferus que fueron muy abundantes en las estaciones BA-07 y BA-10.

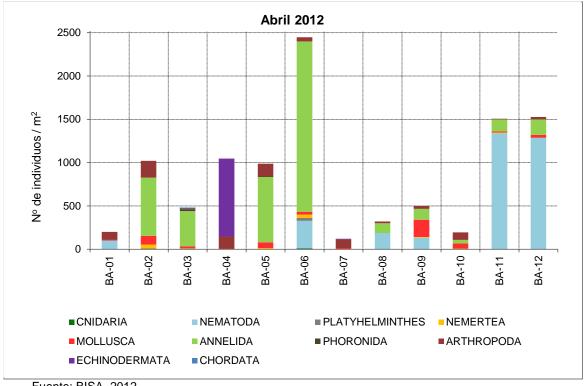
Cuadro 3.4.3.2-12. Densidades promedio del macrobentos por Estación de Muestreo (Número de individuos/m2), Bayóvar 2012.

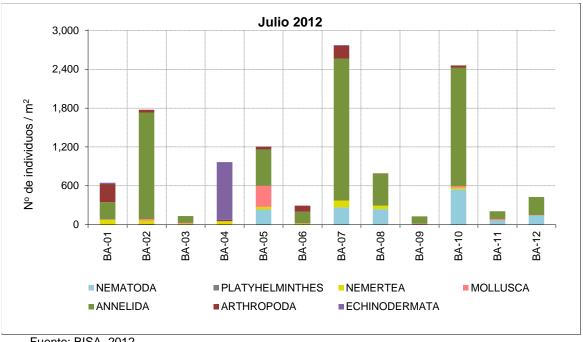
-		
Л	h	•••

		BA-	BA-										
No	Estaciones	01	02	03	04	05	06	07	08	09	10	11	12
CN	IDARIA												
1	ACTINIARIA	0	0	0	0	0	7	0	0	0	0	0	0
NE	MATODA												
1	DESMODORIDA	100	0	0	0	0	320	0	187	133	0	1340	1287
PL	ATYHELMINTHES												
1	LEPTOPLANIDAE	0	7	7	0	0	33	0	0	0	0	0	0
NE	MERTEA												
1	Nemertopsis sp.	0	0	0	0	0	0	0	0	7	0	0	0
2	HOPLONEMERTEA	0	20	0	0	0	0	0	0	0	0	0	0

HOPLONEMERTEA 0 27 7 0 13 40 0 0 0 7 7 0 0 MOLLUSCA 1 CHITONIDAE 0 67 7 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0	Nº	Estaciones	BA- 01	BA- 02	BA- 03	BA- 04	BA- 05	BA- 06	BA- 07	BA- 08	BA- 09	BA- 10	BA- 11	BA- 12
3 2		1												
MOLLUSCA	2		0	27	7	_	10	40	_	_	_	7	7	
1 CHITONIDAE			U	21	/	U	13	40	U	U	0	/	/	0
2 Nucula sp. 0 13 0 0 13 13 0 0 127 0 0 0 0 3 Nucula paytensis 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0			0	67	7		0	20		_		0		
3 Nucula paytensis 0 0 0 0 13 0 0 0 0 0 0 0 0 0													1	
A Pitar sp. 7 0 0 0 0 0 0 0 0 0	_													1
5 TELLINIDAE 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></t<>													1	
6 Ensis sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_													1
7 Caecum sp. 0 13 0 0 0 0 0 0 0 0 0	_													
8 Sinum cymba 0 0 0 0 7 0 <td< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></td<>	_													1
9 Nassarius sp. 0 0 0 0 0 7 0 0 0 0	-													
10 Nassarius dentifer	_	•												1
11 Salitra radwini	-	•												1
12 Anachis nigricans 0 0 0 0 0 0 0 0 0														
13 COLUMBELLIDAE	_													
Stramonita	_	•												
14 haemastoma 0 0 7 0 20 0 13 0 0 47 0 0 15 Stramonita sp. 0 7 0 <	13		0	0	0	0	/	0	0	0	0	0	0	0
15 Stramonita sp. 0 7 0 0 0 0 0 0 0 0	11		0	0	7	0	20	_	12	_	_	47	_	
16													+	
ANNELIDA 1 HAPLOTAXIDA	-													
1 HAPLOTAXIDA 0 13 33 0 7 0 0 67 40 0 27 7 2 Chrysopetalum sp. 0 13 0 0 0 13 0	_		U	U	/	/	U	U	U	U		0	0	U
2 Chrysopetalum sp. 0 13 0 0 0 13 0			_	40	22		7	_		67	10	0	0.7	7
3 Glycinde sp. 0 7 0	_													
4 Lumbrineris tetraura 0 0 0 0 67 0 0 67 0														1
5 Lumbrineris sp. 0 0 53 0 507 0 0 47 0 0 93 120 6 Nephtys impressa 0 0 7 0	_													1
6 Nephtys impressa 0 0 7 0	_													
7 Nereis sp. 0 0 20 0 7 13 0 0 0 7 0 7 Ophiodromus 8 furcatus 0 180 87 0 120 260 0 0 7 0 0 0 9 Pholoides aspera 0 0 13 0 0 47 0													+	
Ophiodromus 8 furcatus 0 180 87 0 120 260 0 0 7 0 0 0 9 Pholoides aspera 0 0 13 0 0 47 0 0 0 0 0 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
8 furcatus 0 180 87 0 120 260 0 0 7 0	/		0	0	20	0	/	13	0	0	0	/	0	/
9 Pholoides aspera 0 0 13 0 0 47 0	R	•	0	180	87	0	120	260	0	0	7	0	0	0
10 Eteone sp. 0 0 0 0 7 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
11 Eulalia sp. 0 <t< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td></t<>		•											+	
12 Pilargis sp. 0		•												
Sigambra 13 tentaculata 0 0 0 0 0 0 0 0 0	-													
13 tentaculata 0 <t< td=""><td>12</td><td></td><td>0</td><td>0</td><td>J 3</td><td></td><td>- 0</td><td>0</td><td>0</td><td><u> </u></td><td></td><td></td><td> "</td><td></td></t<>	12		0	0	J 3		- 0	0	0	<u> </u>			"	
14 HARMOTHOINAE 0 0 0 0 7 0 0 0 0 0 15 Antinoana sp. 0 <td< td=""><td>13</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>7</td></td<>	13		0	0	0	0	0	0	0	0	0	0	0	7
15 Antinoana sp. 0	-													
16 Diopatra chilensis 0 0 0 7 13 0 0 0 0 0 17 Onuphis sp. 0 20 0 0 13 73 0 0 0 0 0 18 Typosyllis sp. 0 73 0 0 573 0 0 7 0 0 0 19 Typosyllis prolixa 0 153 13 0 0 307 0 0 0 0 7 20 Syllis sp. 0 7 13 0 13 0 0 0 0 0 7 13 21 EUSYLLINAE 0	_							20					-	
17 Onuphis sp. 0 20 0 0 13 73 0													+	
18 Typosyllis sp. 0 73 0 0 0 573 0 0 7 0 0 0 19 Typosyllis prolixa 0 153 13 0 0 307 0														
19 Typosyllis prolixa 0 153 13 0 0 307 0 0 0 0 0 7 20 Syllis sp. 0 7 13 0 13 0 0 0 0 0 7 13 21 EUSYLLINAE 0 0 0 0 13 0 0 0 0 0 22 EXOGONINAE 0 93 0 0 13 0 0 0 0 0	_												-	
20 Syllis sp. 0 7 13 0 13 0 0 0 0 0 7 13 21 EUSYLLINAE 0 <	-													
21 EUSYLLINAE 0 0 0 0 13 0 0 0 0 0 22 EXOGONINAE 0 93 0 0 13 0 0 0 0 0														
22 EXOGONINAE 0 93 0 0 0 13 0 0 0 0 0														
	-													
	23		0	13	7	0	13	27	0	0	0	0	0	0

Nº	Estaciones	BA- 01	BA- 02	BA- 03	BA- 04	BA- 05	BA- 06	BA- 07	BA- 08	BA- 09	BA- 10	BA- 11	BA- 12
24	Aphelochaeta sp.	0	0	0	0	0	473	0	0	7	0	0	13
25	Chaetozone sp.	0	67	0	0	40	7	0	0	0	0	0	0
26	Chaetozone sp. 2	0	0	0	0	0	0	0	0	0	0	7	0
27	Chaetozone sp. 3	0	0	147	0	0	0	0	0	0	13	0	0
	Cauleriella												
28	magnaoculata	0	7	7	0	0	0	0	0	0	0	0	0
29	Sabellaria sp.	0	0	0	0	0	20	0	0	0	0	0	0
30	Prionospio peruana	0	13	0	0	0	0	0	0	0	0	0	0
31	Polydora socialis	0	7	0	0	0	0	0	0	0	0	0	0
32	Scolelepis sp.	0	7	0	0	0	0	0	0	0	0	0	0
33	Pista sp.	0	0	0	0	0	7	0	0	0	0	0	0
34	Polycirrus sp.	0	0	0	0	20	0	0	0	0	0	0	0
	Mediomastus												
35	branchiferus	0	0	0	0	7	0	0	0	0	20	0	0
36	Cossura chilensis	0	0	7	0	0	0	0	0	0	0	0	0
37	MALDANIDAE	0	0	0	0	0	0	0	0	0	0	7	0
PH	ORONIDA												
1	Phoronis chilensis	0	0	20	0	7	0	0	0	0	0	0	0
AR	THROPODA												
1	HARPACTICOIDA	7	0	0	0	0	0	0	0	0	0	0	0
2	HALOCYPRIDIDAE	33	187	7	0	120	0	0	0	7	7	0	0
	Ampelisca												
3	mexicana	0	0	0	0	7	0	0	0	0	0	0	0
4	HAUSTORIIDAE	33	0	0	0	0	0	0	0	0	0	0	0
5	COROPHIIDAE	0	0	0	0	0	0	0	0	13	0	0	0
6	AMPHILOCHIIDAE	0	0	0	0	7	0	0	0	0	0	0	0
7	COLOMASTIGIDAE	0	0	0	0	0	0	0	0	0	7	0	0
8	Pagurus sp1	0	0	0	0	0	0	0	0	0	33	0	0
9	Pagurus sp2	0	0	0	0	0	7	0	0	0	0	0	0
	Pinnixa												
10	transversalis	0	0	7	0	13	40	0	13	0	0	7	27
11	Hepatus chilensis	0	0	0	0	0	0	7	7	0	0	0	0
12	XANTHIDAE	0	0	0	13	0	0	0	0	0	0	0	0
13	CIROLANIDAE	20	7	0	127	0	0	93	0	13	40	0	0
EC	HINODERMATA												
1	Cucumaria sp.	0	0	0	900	0	0	7	0	0	0	0	0
СН	ORDATA												
1	Branchiostoma sp.	0	0	7	0	0	0	0	0	0	0	0	0


Julio


		BA-	BA-	BA-	BA-	BA-	BA-		BA-	BA-	BA-	BA-	BA-
Nº	Estaciones	01	02	03	04	05	06	BA-07	08	09	10	11	12
NE	MATODA												
1	DESMODORIDAE	0.0	0.0	0.0	0.0	233.3	0.0	266.7	240.0	0.0	546.7	66.7	140.0
PL	ATYHELMINTHES												
1	LEPTOPLANIDAE	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Nº	Estaciones	BA- 01	BA- 02	BA- 03	BA- 04	BA- 05	BA- 06	BA-07	BA- 08	BA- 09	BA- 10	BA- 11	BA- 12
	MERTEA		92		•	00	00	27101	00	00	. 0		
1	Nemertopsis sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0
2	HOPLONEMERTEA 1	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	HOPLONEMERTEA 2	66.7	26.7	13.3	53.3	0.0	13.3	106.7	53.3	0.0	20.0	0.0	0.0
4	HOPLONEMERTEA 4	0.0	26.7	0.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
МС	LLUSCA		•					•					
1	CHITONIDAE	0.0	13.3	0.0	0.0	313.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	TELLINIDAE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0
3	Ensis sp.	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0
4	Salitra radwini	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	20.0	6.7
5	Stramonita haemastoma	0.0	0.0	6.7	0.0	13.3	0.0	0.0	0.0	6.7	13.3	0.0	0.0
6	Xanthochorus buxea	0.0	13.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
l_	Trigonostoma												
7	tuberculosum	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0
	NELIDA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	0.0	0.0	0.0
1	HAPLOTAXIDA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13.3	0.0	0.0	0.0
3	Chrysopetalum sp.	0.0	13.3	6.7	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Chrysopetalum sp.2	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	Glycinde sp.	126.7	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0
5	Goniada sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0
7	Glycera sp.	0.0	0.0 13.3	20.0	0.0	6.7	0.0	133.3	33.3	0.0	6.7	0.0	0.0
	Lumbrineris sp.	0.0		26.7	0.0	0.0 6.7	20.0	0.0	113.3 6.7	73.3	0.0	13.3	153.3
8	Nephtys impressa	13.3	0.0	0.0	0.0		6.7 0.0	46.7	0.0	0.0	0.0	0.0	6.7
10	Nephtys ferruginea Nephtys sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	20.0
11	Neprilys sp.	0.0	53.3	13.3	0.0	26.7	0.0	60.0	6.7	0.0	340.0	13.3	40.0
12	Ophiodromus furcatus	0.0	293.3	0.0	0.0	60.0	26.7	6.7	26.7	0.0	26.7	6.7	0.0
13	Gyptis sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0
14	Eteone sp.	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0
15	Eulalia sp.	6.7	40.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	Phyllodoce sp.	0.0	0.0	0.0	0.0	0.0	6.7	6.7	0.0	0.0	0.0	0.0	0.0
17	Antinoana sp.	0.0	86.7	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18	Diopatra chilensis	0.0	0.0	13.3	0.0	6.7	0.0	0.0	0.0	0.0	0.0	6.7	0.0
19	Onuphis sp.	0.0	40.0	6.7	0.0	86.7	6.7	13.3	13.3	6.7	33.3	13.3	0.0
20	Typosyllis prolixa	0.0	326.7	0.0	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21	Typosyllis magadalena	0.0	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22	Typosyllis sp.	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0
23	Syllis sp.	0.0	66.7	0.0	0.0	13.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24	EUSYLLINAE	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	EXOGONINAE	0.0	213.3	6.7	0.0	140.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0
26	Dorvillea sp.	0.0	6.7	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	Aphelochaeta sp.	0.0	0.0	0.0	0.0	0.0	6.7	0.0	13.3	0.0	0.0	0.0	0.0
28	Chaetozone sp.	0.0	260.0	6.7	0.0	53.3	6.7	0.0	0.0	0.0	6.7	6.7	0.0
29	Cauleriella magnaoculata	0.0	6.7	0.0	0.0	33.3	20.0	0.0	40.0	0.0	0.0	0.0	0.0
30	Paraprionospio pinnata	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0	40.0

Nº	Estaciones	BA- 01	BA- 02	BA- 03	BA- 04	BA- 05	BA- 06	BA-07	BA- 08	BA- 09	BA- 10	BA- 11	BA- 12
31	Prionospio peruana	86.7	0.0	0.0	0.0	0.0	0.0	13.3	0.0	0.0	0.0	0.0	6.7
32	Polydora socialis	0.0	0.0	0.0	0.0	0.0	6.7	0.0	73.3	0.0	0.0	0.0	0.0
33	Spiophanes berkeleyorum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0
34	Polydora sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0
35	Chone sp.	0.0	0.0	0.0	0.0	0.0	13.3	0.0	0.0	0.0	0.0	0.0	0.0
36	Pista sp.	0.0	13.3	6.7	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
37	Polycirrus sp.	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38	Pherusa sp.	0.0	13.3	0.0	0.0	13.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39	Owenia collaris	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0
-	Branchiocapitella	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0
40	abranchiata	0.0	0.0	0.0	0.0	0.0	13.3	1093.3	6.7	0.0	673.3	26.7	0.0
41	Mediomastus branchiferus	0.0	6.7	0.0	0.0	13.3	20.0	806.7	66.7	13.3	706.7	20.0	6.7
42	Leitoscoloplos chilensis	0.0	0.0	0.0	0.0	0.0	6.7	13.3	60.0	0.0	0.0	0.0	6.7
43	Protoariciella sp.	0.0	33.3	0.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
44	Ophelia sp.	26.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
45	Axiothella sp.	6.7	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
46	Aricidea sp.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0
AR	THROPODA												
1	HAUSTORIIDAE	233.3	0.0	0.0	6.7	26.7	33.3	80.0	0.0	0.0	0.0	0.0	0.0
2	PLATYSCHNOPIDAE	13.3	0.0	0.0	0.0	0.0	6.7	120.0	0.0	0.0	6.7	0.0	0.0
3	COLOMASTIGIDAE	6.7	20.0	0.0	6.7	0.0	6.7	0.0	0.0	0.0	6.7	0.0	0.0
4	GAMMARIDAE	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0
5	Ampelisca mexicana	0.0	0.0	0.0	0.0	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0
6	Pinnixa transversalis	13.3	6.7	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0
7	Acanthonix petiverii	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0
8	MAJIDAE	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	PAGURIDAE	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0
10	CIROLANIDAE	6.7	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	HALOCYPRIDIDAE	6.7	6.7	0.0	0.0	13.3	0.0	0.0	6.7	0.0	6.7	0.0	0.0
EC	HINODERMATA	,			T		ı	T	ı	ı	1	ı	
1	Cucumaria sp.	20.0	0.0	0.0	893.3	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0

Figura 3.4.3.2-17. Densidades promedio del macrobentos por Estación de Muestreo (Número de individuos/m2), Bayóvar 2012

2800 2100 N° de individuos / m² 1400 700 BA-04 BA-08 ■abril ■ julio

Figura 3.4.3.2-18. Comparación de la densidad del macrobentos por Estación de Muestreo, Bayóvar, 2012

c.2 Biomasa

La biomasa promedio del área de Bayóvar, en el mes de abril fue de 169.2558 g/m². Los valores fluctuaron desde 0.2093 g/m² en la estación BA-11 hasta 909.8013 g/m²) en la estacion BA-10. Las altas biomasas se debieron a la especie Stramonita haemastoma, del phylum Mollusca, así como al cangrejo Hepatus chilensis.

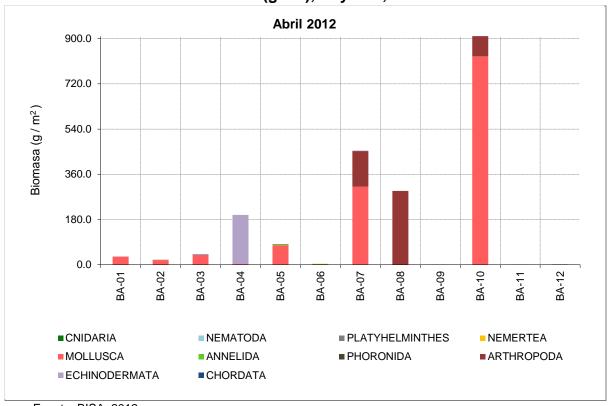
En julio el promedio de la biomasa fue de 106.2168 g/m². Los valores fluctuaron desde 0.0707 g/m² en la estacion BA-11 hasta 769.7100 g/m² en la estacion BA-04. El phylum Mollusca siguió siendo el grupo que contribuyó más en la biomasa La especie Stramonita haemastoma, es la responsable de gran parte de la biomasa. También se reportó a la especie Cucumaria sp, perteneciente al phylum Echinodermata, la cual presentó una gran concentración en la estación BA-04.

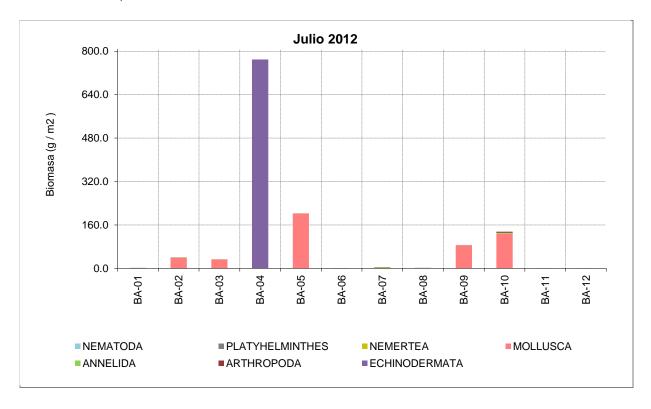
Cuadro 3.4.3.2-13. Biomasa promedio del macrobentos por Estación de Muestreo (g/m2), Bayóvar 2012 Abril

Nº	Estaciones	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
CN	DARIA												
1	ACTINIARIA	0.0000	0.0000	0.0000	0.0000	0.0000	0.0047	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NEI	MATODA												
1	DESMODORIDA	0.0007	0.0000	0.0000	0.0000	0.0000	0.0013	0.0000	0.0020	0.0020	0.0000	0.0027	0.0020
PL/	TYHELMINTHES												
1	LEPTOPLANIDAE	0.0000	0.0053	0.0013	0.0000	0.0000	0.0413	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NEI	MERTEA												
1	Nemertopsis sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0147	0.0000	0.0000	0.0000
2	HOPLONEMERTEA 1	0.0000	0.0427	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	HOPLONEMERTEA 2	0.0000	0.0080	0.0007	0.0000	0.0087	0.1093	0.0000	0.0000	0.0000	0.0053	0.0020	0.0000
MO	LLUSCA												
1	CHITONIDAE	0.0000	0.5073	0.0080	0.0000	0.0000	0.1160	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	Nucula sp.	0.0000	0.0013	0.0000	0.0000	0.0047	0.0013	0.0000	0.0000	0.0213	0.0000	0.0000	0.0000
3	Nucula paytensis	0.0000	0.0000	0.0000	0.0000	0.0960	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	Pitar sp.	31.67	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	TELLINIDAE	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0027	0.0000
6	Ensis sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2240
7	Caecum sp.	0.0000	0.0053	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
8	Sinum cymba	0.0000	0.0000	0.0000	0.0000	0.1087	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
9	Nassarius sp.	0.0000	0.0000	0.0000	0.0000	0.1480	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10	Nassarius dentifer	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.5920	0.0000	0.0000
11	Salitra radwini	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2160	0.0000	0.0000	0.1193
12	Anachis nigricans	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0933	0.0000	0.0000
13	COLUMBELLIDAE	0.0000	0.0000	0.0000	0.0000	0.0953	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
14	Stramonita haemastoma	0.0000	0.0000	30.49	0.0000	77.00	0.0000	310.33	0.0000	0.0000	824.61	0.0000	0.0000
15	Stramonita sp.	0.0000	18.14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
16	Conus sp.	0.0000	0.0000	8.4493	2.4893	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ANI	NELIDA												
1	HAPLOTAXIDA	0.0000	0.0007	0.0007	0.0000	0.0007	0.0000	0.0000	0.0020	0.0020	0.0000	0.0013	0.0007

No	Estaciones	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
2	Chrysopetalum sp.	0.0000	0.0053	0.0000	0.0000	0.0000	0.0087	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	Glycinde sp.	0.0000	0.0053	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	Lumbrineris tetraura	0.0000	0.0000	0.0000	0.0000	0.0000	0.2047	0.0000	0.0000	0.0520	0.0000	0.0000	0.0000
5	Lumbrineris sp.	0.0000	0.0000	0.1680	0.0000	2.9647	0.0000	0.0000	0.1380	0.0000	0.0000	0.1867	0.1413
6	Nephtys impressa	0.0000	0.0000	0.0027	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
7	Nereis sp.	0.0000	0.0000	0.0553	0.0000	0.0227	0.0060	0.0000	0.0000	0.0000	0.0053	0.0000	0.0020
8	Ophiodromus furcatus	0.0000	0.2093	0.0160	0.0000	0.2167	0.1507	0.0000	0.0000	0.0013	0.0000	0.0000	0.0000
9	Pholoides aspera	0.0000	0.0000	0.0027	0.0000	0.0000	0.0067	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10	Eteone sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
11	Eulalia sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0053	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
12	Pilargis sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0040
13	Sigambra tentaculata	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0053
14	HARMOTHOINAE	0.0000	0.0000	0.0000	0.0000	0.0000	0.0033	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
15	Antinoana sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0073	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
16	Diopatra chilensis	0.0000	0.0000	0.0000	0.0000	0.0807	0.2400	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
17	Onuphis sp.	0.0000	0.0540	0.0000	0.0000	0.0053	0.6187	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
18	Typosyllis sp.	0.0000	0.0053	0.0000	0.0000	0.0000	0.1460	0.0000	0.0000	0.0007	0.0000	0.0000	0.0000
19	Typosyllis prolixa	0.0000	0.0807	0.0020	0.0000	0.0000	0.1840	0.0000	0.0000	0.0000	0.0000	0.0000	0.0033
20	Syllis sp.	0.0000	0.0007	0.0027	0.0000	0.0033	0.0000	0.0000	0.0000	0.0000	0.0000	0.0007	0.0013
21	EUSYLLINAE	0.0000	0.0000	0.0000	0.0000	0.0000	0.0053	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
22	EXOGONINAE	0.0000	0.0080	0.0000	0.0000	0.0000	0.0027	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
23	Dorvillea sp.	0.0000	0.0040	0.0040	0.0000	0.0053	0.0080	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
24	Aphelochaeta sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.9420	0.0000	0.0000	0.0027	0.0000	0.0000	0.0013
25	Chaetozone sp.	0.0000	0.0920	0.0000	0.0000	0.0227	0.0047	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
26	Chaetozone sp. 2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0053	0.0000
27	Chaetozone sp. 3	0.0000	0.0000	0.0273	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0073	0.0000	0.0000
28	Cauleriella magnaoculata	0.0000	0.0033	0.0047	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
29	Sabellaria sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0033	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
30	Prionospio peruana	0.0000	0.0013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
31	Polydora socialis	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
32	Scolelepis sp.	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
33	Pista sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.1007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Nº	Estaciones	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
34	Polycirrus sp.	0.0000	0.0000	0.0000	0.0000	0.0060	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
35	Mediomastus branchiferus	0.0000	0.0000	0.0000	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000	0.0007	0.0000	0.0000
36	Cossura chilensis	0.0000	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
37	MALDANIDAE	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0047	0.0000
PH	ORONIDA												
1	Phoronis chilensis	0.0000	0.0000	0.0040	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
AR	THROPODA												
1	HARPACTICOIDA	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	HALOCYPRIDIDAE	0.0013	0.0027	0.0007	0.0000	0.0027	0.0000	0.0000	0.0000	0.0007	0.0007	0.0000	0.0000
3	Ampelisca mexicana	0.0000	0.0000	0.0000	0.0000	0.0360	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	HAUSTORIIDAE	0.0033	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	COROPHIIDAE	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0067	0.0000	0.0000	0.0000
6	AMPHILOCHIIDAE	0.0000	0.0000	0.0000	0.0000	0.0047	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
7	COLOMASTIGIDAE	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0007	0.0000	0.0000
8	Pagurus sp1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	80.489	0.0000	0.0000
9	Pagurus sp2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0060	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10	Pinnixa transversalis	0.0000	0.0000	0.0047	0.0000	0.0353	0.1287	0.0000	0.1540	0.0000	0.0000	0.0033	0.0707
11	Hepatus chilensis	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	142.37	293.42	0.0000	0.0000	0.0000	0.0000
12	XANTHIDAE	0.0000	0.0000	0.0000	0.0120	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
13	CIROLANIDAE	0.0007	0.0027	0.0000	0.0107	0.0000	0.0000	0.0053	0.0000	0.0033	0.0007	0.0000	0.0000
ECI	HINODERMATA												
1	Cucumaria sp.	0.0000	0.0000	0.0000	195.54	0.0000	0.0000	1.5667	0.0000	0.0000	0.0000	0.0000	0.0000
CH	ORDATA			·									
1	Branchiostoma sp.	0.0000	0.0000	0.0827	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000


Julio


N⁰ Estaciones	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
NEMATODA												
1 DESMODORIDAE	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000
PLATYHELMINTHES												
1 LEPTOPLANIDAE	0.0000	0.0033	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NEMERTEA												

Nº	Estaciones	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
1	Nemertopsis sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0087	0.0000	0.0000
2	HOPLONEMERTEA 1	0.0047	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	HOPLONEMERTEA 2	0.0227	0.0060	0.0040	0.0113	0.0000	0.0100	0.2220	0.0467	0.0000	0.0093	0.0000	0.0000
4	HOPLONEMERTEA 4	0.0000	0.0080	0.0000	0.0000	0.0053	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
MO	LLUSCA	•						•					
1	CHITONIDAE	0.0000	0.0040	0.0000	0.0000	0.5193	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	TELLINIDAE	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013	0.0000	0.0000
3	Ensis sp.	0.0093	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0053	0.0000	0.0000	0.0000
4	Salitra radwini	0.0000	0.0000	0.0000	0.0000	0.0000	0.0120	0.0000	0.0000	0.0000	0.0000	0.0167	0.0607
5	Stramonita haemastoma	0.0000	0.0000	27.9940	0.0000	201.16	0.0000	0.0000	0.0000	85.8747	106.54	0.0000	0.0000
6	Xanthochorus buxea	0.0000	38.8413	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
8	Trigonostoma tuberculosum	0.0000	0.0000	5.2433	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	20.7013	0.0000	0.0000
ΙΝΑ	NELIDA	•	•					•					
1	HAPLOTAXIDA	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013	0.0000	0.0000	0.0000
2	Chrysopetalum sp.	0.0000	0.0493	0.0040	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	Chrysopetalum sp.2	0.0000	0.0000	0.0000	0.0000	0.0060	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	Glycinde sp.	0.3360	0.0000	0.0000	0.0000	0.0000	0.0033	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	Goniada sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0573	0.0000	0.0000
6	Glycera sp.	0.0000	0.0000	0.0293	0.0000	0.0047	0.0000	1.7847	0.1000	0.0000	0.1520	0.0000	0.0000
7	Lumbrineris sp.	0.0000	0.0073	0.0140	0.0000	0.0000	0.0113	0.0000	0.5293	0.0333	0.0000	0.0153	0.4133
8	Nephtys impressa	0.0767	0.0000	0.0000	0.0000	0.0027	0.0013	0.0907	0.0740	0.0000	0.0000	0.0000	0.0020
9	Nephtys ferruginea	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0640
10	Nephtys sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0600	0.0000	0.0000	0.0000	0.0000
11	Nereis sp.	0.0000	0.0560	0.0073	0.0000	0.0773	0.0000	0.1180	0.0013	0.0000	0.7907	0.0027	0.0073
12	Ophiodromus furcatus	0.0000	0.2567	0.0000	0.0000	0.0093	0.0107	0.0040	0.0093	0.0000	0.0087	0.0013	0.0000
13	Gyptis sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013	0.0000	0.0000
14	Eteone sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0027	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
15	Eulalia sp.	0.0033	0.0593	0.0000	0.0000	0.0013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
16	Phyllodoce sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0020	0.0047	0.0000	0.0000	0.0000	0.0000	0.0000
17	Antinoana sp.	0.0000	0.1140	0.0000	0.0000	0.0027	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
18	Diopatra chilensis	0.0000	0.0000	0.0027	0.0000	0.0513	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013	0.0000
19	Onuphis sp.	0.0000	0.0987	0.0060	0.0000	0.1013	0.0020	0.0073	0.0067	0.0060	0.0067	0.0027	0.0000
20	Typosyllis prolixa	0.0000	0.0807	0.0000	0.0000	0.0027	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
21	Typosyllis magadalena	0.0000	0.0547	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
22	Typosyllis sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
23	Syllis sp.	0.0000	0.0107	0.0000	0.0000	0.0013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
24	EUSYLLINAE	0.0000	0.0060	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
25	EXOGONINAE	0.0000	0.0267	0.0007	0.0000	0.0380	0.0000	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000
26	Dorvillea sp.	0.0000	0.0147	0.0000	0.0000	0.0027	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Nº	Estaciones	BA-01	BA-02	BA-03	BA-04	BA-05	BA-06	BA-07	BA-08	BA-09	BA-10	BA-11	BA-12
27	Aphelochaeta sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0107	0.0000	0.0080	0.0000	0.0000	0.0000	0.0000
28	Chaetozone sp.	0.0000	0.3140	0.0027	0.0000	0.0507	0.0020	0.0000	0.0000	0.0000	0.0040	0.0033	0.0000
29	Cauleriella magnaoculata	0.0000	0.0020	0.0000	0.0000	0.0053	0.0053	0.0000	0.0107	0.0000	0.0000	0.0000	0.0000
30	Paraprionospio pinnata	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0093	0.0000	0.0000	0.0607
31	Prionospio peruana	0.0187	0.0000	0.0000	0.0000	0.0000	0.0000	0.0027	0.0000	0.0000	0.0000	0.0000	0.0020
32	Polydora socialis	0.0000	0.0000	0.0000	0.0000	0.0000	0.0070	0.0000	0.0993	0.0000	0.0000	0.0000	0.0000
33	Spiophanes berkeleyorum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0020	0.0000
34	Polydora sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0020	0.0000
35	Chone sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
36	Pista sp.	0.0000	0.0060	0.0073	0.0000	0.0207	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
37	Polycirrus sp.	0.0000	0.0480	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
38	Pherusa sp.	0.0000	0.0140	0.0000	0.0000	0.0060	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
39	Owenia collaris	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0027	0.0000	0.0000
40	Branchiocapitella abranchiata	0.0000	0.0000	0.0000	0.0000	0.0000	0.0047	0.4513	0.0013	0.0000	0.4773	0.0087	0.0000
41	Mediomastus branchiferus	0.0000	0.0007	0.0000	0.0000	0.0007	0.0027	1.6480	0.1053	0.0067	2.5113	0.0147	0.0013
42	Leitoscoloplos chilensis	0.0000	0.0000	0.0000	0.0000	0.0000	0.0040	0.0053	0.1253	0.0000	0.0000	0.0000	0.0027
43	Protoariciella sp.	0.0000	0.0060	0.0000	0.0000	0.0040	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
44	Ophelia sp.	0.1287	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
45	Axiothella sp.	0.0040	0.0000	0.0000	0.0000	0.0027	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
46	Aricidea sp.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000
AR	THROPODA												
1	HAUSTORIIDAE	0.1640	0.0000	0.0000	0.0020	0.0053	0.0147	0.0147	0.0000	0.0000	0.0000	0.0000	0.0000
2	PLATYSCHNOPIDAE	0.0113	0.0000	0.0000	0.0000	0.0000	0.0027	0.0367	0.0000	0.0000	0.0020	0.0000	0.0000
3	COLOMASTIGIDAE	0.0027	0.0033	0.0000	0.0033	0.0000	0.0040	0.0000	0.0000	0.0000	0.0020	0.0000	0.0000
4	GAMMARIDAE	0.0000	0.0000	0.0000	0.0027	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013	0.0000	0.0000
5	Ampelisca mexicana	0.0000	0.0000	0.0000	0.0000	0.0000	0.0060	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
6	Pinnixa transversalis	0.0127	0.0053	0.0000	0.0000	0.0000	0.0107	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
7	Acanthonix petiverii	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.8340	0.0000	0.0000
8	MAJIDAE	0.0000	0.0053	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
9	PAGURIDAE	0.0000	0.0000	0.0000	0.0000	0.0000	0.0080	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
10	CIROLANIDAE	0.0020	0.0000	0.0000	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
11	HALOCYPRIDIDAE	0.0007	0.0007	0.0000	0.0000	0.0027	0.0000	0.0000	0.0007	0.0000	0.0007	0.0000	0.0000
ECI	HINODERMATA												
1	Cucumaria sp.	0.7693	0.0000	0.0000	769.69	0.0000	0.0000	0.3807	0.0000	0.0000	0.0000	0.0000	0.0000
	onto: DICA 2012												

Figura 3.4.3.2-19. Biomasa promedio del macrobentos por Estación de Muestreo (g/m2), Bayóvar, 2012

900.0
720.0
720.0
720.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0
180.0

Figura 3.4.3.2-20. Comparación de la densidad del macrobentos por Estación de Muestreo, Bayóvar, 2012

c.3 Parámetros Comunitarios

El índice de riqueza de especies de Margalef en abril tuvo un valor minimo de 0.431 hasta el máximo de 3.460, siendo el promedioe de 1.847. En julio los valores del índice de riqueza subieron desde 0.582 hasta un máximo de 4.048. El promedio se ubicó en 2.367. En julio el índice de riqueza de especies aumentó hasta llegar a valores de comunidades con riqueza media.

Cuadro 3.4.3.2-14. Parámetros Comunitarios del macrobentos, Bayóvar 2012

Temporada	Estación	S	N	d	J'	H'(log ₂)	1-λ
	BA-01	6	200	0.944	0.782	2.021	0.682
	BA-02	24	1020	3.320	0.793	3.634	0.888
	BA-03	21	480	3.240	0.781	3.429	0.849
Abril	BA-04	4	1047	0.431	0.341	0.683	0.246
ADIII	BA-05	23	987	3.191	0.602	2.723	0.703
	BA-06	28	2447	3.460	0.704	3.382	0.860
	BA-07	4	120	0.627	0.549	1.098	0.377
	BA-08	5	320	0.693	0.705	1.638	0.593

Temporada	Estación	S	N	d	J'	H'(log ₂)	1-λ
	BA-09	12	500	1.770	0.778	2.790	0.817
	BA-10	11	193	1.900	0.871	3.012	0.847
	BA-11	9	1507	1.093	0.232	0.735	0.205
	BA-12	12	1527	1.501	0.286	1.025	0.283
	BA-01	16	647	2.318	0.721	2.885	0.798
julio	BA-02	29	1773	3.743	0.779	3.786	0.893
	BA-03	12	133	2.248	0.944	3.384	0.890
	BA-04	5	967	0.582	0.209	0.484	0.143
	BA-05	28	1207	3.805	0.752	3.616	0.867
	BA-06	24	293	4.048	0.936	4.289	0.938
	BA-07	15	2773	1.766	0.640	2.500	0.743
	BA-08	18	793	2.546	0.800	3.338	0.855
	BA-09	7	127	1.239	0.725	2.035	0.632
	BA-10	21	2460	2.562	0.567	2.491	0.774
	BA-11	12	207	2.063	0.871	3.124	0.843
	BA-12	10	427	1.486	0.715	2.374	0.742

Leyenda: S= número de especies, N= número de individuos, d= riqueza de especies de Margalef, J'=equitatividad de Pielou, H'= Diversidad de Shannon- Wiener y 1-λ = Diversidad de Simpson

El índice de diversidad de Shannon-Wiener (H') para el mes de abril varió desde 0.683 bits/ individuo hasta valores altos de 3.634 bits/ individuo (estacion BA-02). El promedio para el área de estudio fue de 2.181 bits/ individuo. En julio los valores fluctuaron desde 0.484 bits/ individuo hasta 4.289 bits/ individuo, siendo el promedio fue de 2.859 bits/ individuo. El índice de diversidad aumento en julio en ambos casos los valores indican una comunidad de diversidad media.

El índice de diversidad de Simpson (1-λ) en abril fluctuó desde valores de 0.205 hasta 0.888, el promedio de la zona en abril fue de 0.612; indicando una divcersidad media. En julio los valores van desde 0.143 hasta valores altos de 0.938, el promedio para julio fue de 0.760. en ambas temporadas la diversidad fue en promedio mediana, aumentando en julio.

Los valores de equidad de Pielou en abril muestran valores desde 0.232 hasta 0.871; el promedio fue de 0.619. Los valores en julio muestran valores semejantes a la evaluación de abril, variando desde 0.209 hasta 0.944, con un promedio de 0.722.

Los valores de homogeneidad son más altos en julio, gracias al mayor número de especies que presentan grandes abundancias.

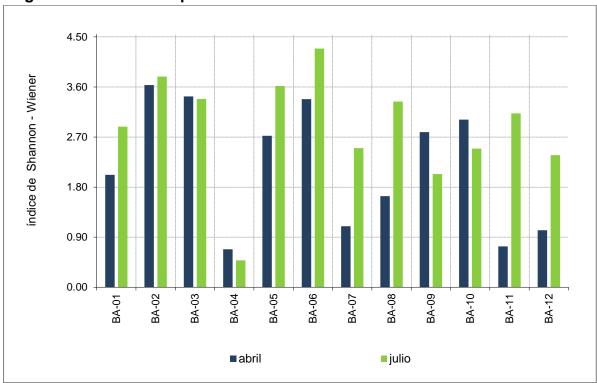
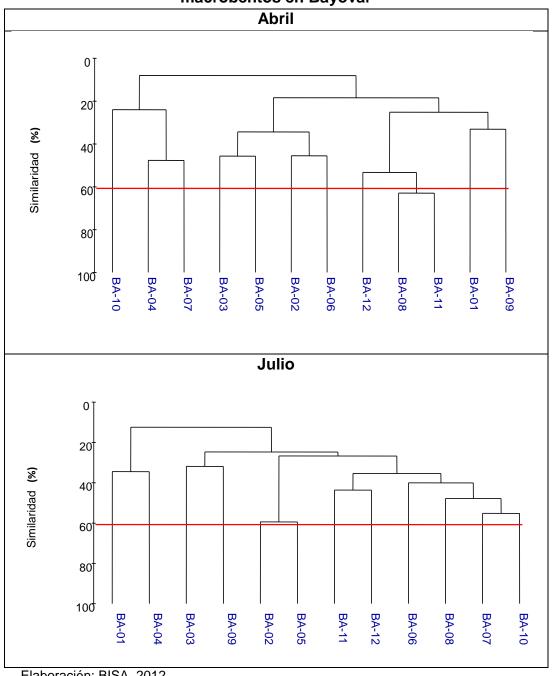


Figura 3.4.3.2-21. Comparación de los Índices de diversidad del macrobentos.


Fuente: BISA, 2012

c.4 Análisis de Similaridad

Los valores de similaridad en Bayóvar muestran que abril solo se forma un agrupamiento entre las estaciones BA-08 y BA-11 con 63.0% de similaridad. Las demás estaciones presentan valores menores que indican diferencias entre las estructuras comunitarias. Por su parte, en julio los valores de similaridad siguen mostrando valores menores al 60%. Las estaciones BA-02 y BA-05 presentan similaridad de 59.4%.

En ambas temporadas no se observó un agrupamiento de las estaciones, por lo que se considera que son estructuras comunitarias que se comportan de manera independiente.

Figura 3.4.3.2-22. Dendrograma del Índice de Similaridad de Bray – Curtis del macrobentos en Bayóvar

D. Necton

La ubicación de los puntos de evaluación durante las épocas de muestreo se muestra en el Cuadro 3.4.3.2-15.

Cuadro 3.4.3.2-15. Pesca experimental en la zona de Bayóvar 2012.

			Cala	Profundidad (m)	Puesta del arte				
Fecha A	Arte	Zona			Hora		UTM WSG 84		
					H. inicio	H.final	Este	Norte	
27.04.12	cortina	Bayóvar	Cala 4	7	18:00	05:30	492832	9360507	
28:04.12	cortina	Bayóvar	Cala 5	10	09:00	12:20	493271	9360263	
29.04.12	cortina	Bayóvar	Cala 6	8	09:50	14:20	492839	9360486	
24.04.12	cortina	Bayóvar	Cala2	10	08:28	12:00	492588	9361020	
25.04.12	cortina	Bayóvar	Cala3	6	08:33	12:40	492975	9360640	
27.04.12	cortina	Bayóvar	Cala4	11	08:39	14:45	493457	9360090	

Fuente: BISA, 2012

d.1 Composición de las capturas en abril

Se capturaron 15 especies de peces. La captura acumulada de la pesca experimental, para la zona de Bayóvar, en abril fue 29.50 kg. Las especies con mayores capturas fueron: lisa que representó el 48.6% de la captura; seguido de san pedro con 23.7 %; cachema con 8-0 %; chula con 5-6 % y suco 4.2%. (Cuadro 3.4.3.2-16).

Cuadro 3.4.3.2-16. Composición por especies frente a Bayóvar en abril del 2012.

Nombre Común	Nombre científico	Lance 4 (kg)	Lance 5 (kg)	Lance 6 (kg)	Total (kg)	%
Agujilla	Strongylura exilis	0.80			0.80	2.7
Cachema	Cynoscion analis	0.35	2.00		2.35	8.0
Chula	Menticirrhus paitensis	0.15	1.50		1.65	5.6
Chumbo	Caranx caballus			0.30	0.30	1.0
Espejo	Selene peruviana	0.10			0.10	0.3
Fraile	Aphos porosus	0.20			0.20	0.7

Nombre Común	Nombre científico	Lance 4 (kg)	Lance 5 (kg)	Lance 6 (kg)	Total (kg)	%
Lisa	Mugil cephalus	0.30	4.03	10.00	14.33	48.6
Lorna	Sciaena deliciosa	0.20			0.20	0.7
Marotillo	Calamus brachysomus	0.07		0.25	0.32	1.1
Pampano	Trachinotus paitensis	0.10			0.10	0.3
Pintadilla	Cheilodactylus variegatus			0.35	0.35	1.2
Samasa	Anchoa nasus	0.05	0.30		0.35	1.2
San Pedro	Nicholsina denticulata			7.00	7.00	23.7
Suco	Paralonchurus peruanus	0.25	1.00		1.25	4.2
Trambollo	Labrisomus philippii			0.20	0.20	0.7
Total general	104 0040	2.57	8.83	18.10	29.50	

d.2 Composición de las capturas en julio

En Bayóvar se capturaron 8 especies de peces. La captura acumulada de los lances 2 al lance 4 fue de 14.63 kg. Las especies con mayores capturas fueron, pintadilla con 75.2 %; seguido de cabrilla con 6.8 %; cabinza con 5.7 % y caballa con 5.5 %. (Cuadro 3.4.3.2-17).

Cuadro 3.4.3.2-17. Composición por especies en Bayóvar en julio del 2012.

Nombre Común	Nombre científico	Lance 2	Lance 3	Lance 4	Total general	%
Caballa	Scomber japonicus	0.6	0.2		0.8	5.5
Cabinza	Isacia conceptionis	0.08		0.75	0.83	5.7
Cabrilla	Paralabrax humeralis			1	1	6.8
Chavelo	Opisthonema libertate	0.15			0.15	1.0
Peje Blanco	Caulolatilus affinis	0.4			0.4	2.7
Peje Fino	Caulolatilus princeps			0.25	0.25	1.7
Pintadilla	Cheilodactylus variegatus	3	8		11	75.2
Señorita	Halichoeres dispilus	0.2			0.2	1.4
Total general		4.43	8.2	2	14.63	

Fuente: BISA, 2012 Lances 2-4 a Bayóvar

d.3 Estructura por tamaños.

La determinación de la estructura por tamaños se realizó en base a la longitud total (L.T.). Se utilizó un ictiómetro graduado al centímetro para especímenes medianos y para especies pequeñas como la samasa y ayamarca se utilizó un ictiometro graduado al medio centímetro. En la caballa se midió la longitud a la horquilla.

El análisis de los ejemplares medidos en abril se presenta en el cuadro 3.4.3.2-6 y Figura 3.4.3.2-1.

Estructura de tamaños en Bayóvar en abril

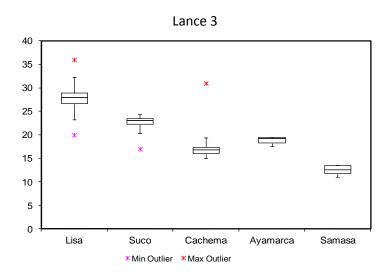
<u>Lance 2:</u> Fue el más diverso de los lances realizados se capturó: samasa, lisa, cachema, coco, lorna.

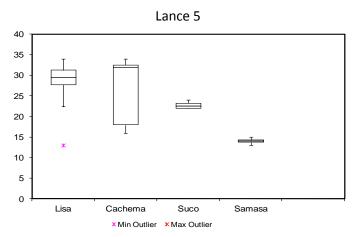
Lance 3:

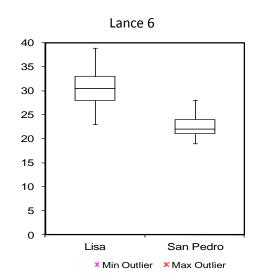
Lisa.- Presentó un rango de tallas entre 13.0 hasta 34.0 cm de longitud total, con moda en 28.0 cm y longitud media de 28.4 cm.

Cachema.- Se midieron 8 ejemplares de cachema, con rango de tallas de 16.0 a 34.0 cm de L.T; moda de 32-0cm y longitud media de 27.0 cm.

Suco.- Se midieron 4 ejemplares, con rango de tallas entre 22-0 hasta 24-0 cm de L.T. con moda de 22.0 cm y longitud media en 22.4 cm.


Samasa.- Comprendió un rango de tallas entre 13.0 hasta 15.0 cm; con moda en 14.0 y longitud media de 14.0 cm.


Lance 4:


Lisa.-Se realizaron mediciones a 28 ejemplares de lisa, con un rango de tallas comprendidos entre 23.0 hasta 39.0 cm L.T; moda en 30.0 cm y longitud media de 30.4cm.

San Pedro.- Los 26 ejemplares de San Pedro medios comprendió un rango de tallas de 19.0 hasta 28.0 cm de L.T. con moda en 21.0 cm y longitud media de 22.7 cm. (Figura 3.4.3.2-23 y Cuadro 3.4.3.2-18).

Figura 3.4.3.2-23. Estructura por tamaños en la Pesca experimental, abril 2012

Cuadro 3.4.3.2-18. Parámetros biométricos de especies por lance en abril 2012

Lance 3	Rango	Media	Mediana	Moda	Dv estándar	Varianza
Ayamarca	17.5 - 19.5	18.8	19.3	19.5	0.9	0.8
Cachema	15 - 31	18.3	16.5	16.0	5.2	27.4
Lisa	20 - 36	27.7	28.0	28.0	3.4	11.5
Samasa	11 - 13.5	12.4	12.5	13.5	1.1	1.2
Suco	17 - 24	22.2	23.0	23.0	2.0	4.2
Lance 5	Rango	Media	Mediana	Moda	Dv estándar	Varianza
Lisa	13 - 34	28.4	29.5	28.0	4.8	23.1
Cachema	16 - 34	27.0	32.0	32.0	8.1	65.1
Suco	22 - 24	22.8	22.5	22.0	1.0	0.9
Samasa	13 - 15	14.0	14.0	14.0	0.8	0.7
_						
Lance 6	Rango	Media	Mediana	Moda	viación están	Varianza
Lisa	23 - 39	30.4	30.5	30.0	4.0	16.2
San Pedro	19 - 28	22.7	22.0	21.0	2.4	5.6

Estructura de tamaños en julio

Los resultados en ambas zonas evaluados en julio se presentan en el cuadro 3.4.3.2-19.

Bayóvar

Los Lances 2 hasta el Lance 4, se realizaron en la zona de Bayóvar

Lance 2

Pintadilla.-Fueron medidos 29 ejemplar; rango entre 15.0 hasta 31.0 cm de L.T; moda de 19.0 cm y longitud media de 19.5 cm.

Caballa.-Se midieron 8 ejemplares de caballa, con rango de 15.0cm hasta 22.0cm de L.H. moda en 16.0cm y longitud media de 17.0 cm.

Señorita.- Se midió 5 individuos; con rango de 14 a 17cm; media de 15.6cm y moda de 15cm.

Cabinza.- Se midieron 4 individuos, con rango de 10-12cm; media de 10.8cm y moda de 10cm.

Peje blanco.- Se midieron 4 individuos, con rango de 17-23cm; media de 20cm y no se presenta moda.

Lance 3

Pintadilla.- Se midieron 15 ejemplares, el rango de tallas fue de 20.0cm hasta 27.0 cm de L.T. con moda en 24cm y longitud media de 24.5cm.

Caballa.- Se midieron 2 individuos con longitud total de 22cm.

Lance 4

Cabrilla.-Se midieron 9 ejemplares de cabrilla, con un rango de 20.0 hasta 29.0 cm de L.T.; moda en 24.0 cm y longitud media de 24-3 cm.

Cabinza.-Se midió 5 ejemplares de cabinza, con rango de tallas de 23-0 hasta 25.0 cm de L.T. con moda en 23 cm, y longitud media de 24.0 cm.

Peje blanco.- Se midió un individuo de 22cm de longitud total. (Fig. 3.4.3.2-43 y Cuadro 3.4.3.2-19).

35
30
25
20
15
10
Pintadilla Caballa Peje Blanco Señorita Cabinza

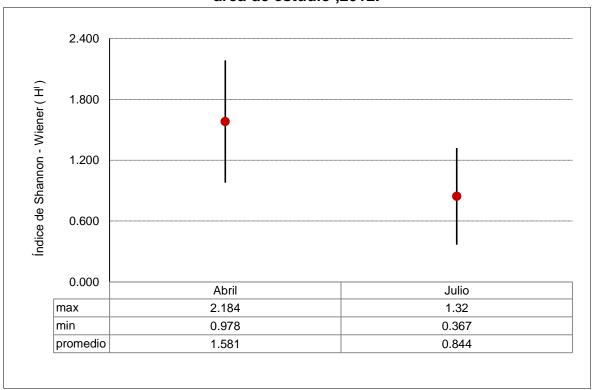
**Min Outlier **Max Outlier

Figura 3.4.3.2-24. Estructura por tamaños. Pesca experimental, julio 2012.

Cuadro 3.4.3.2-19. Parámetros biométricos de especies por lance en julio 2012.

Lance 2	Rango	Media	Mediana	Moda	Dv estándar	Varianza
Caballa	15 - 22	17.0	16.0	16.0	2.2	4.9
Cabinza	10 - 12	10.8	10.5	10.0	1.0	0.9
Peje Blanco	17 - 23	20.0	20.0	s/m	2.6	6.7
Pintadilla	15 - 31	19.5	19.0	19.0	3.3	11.0
Señorita	14 - 17	15.6	15.0	15.0	1.3	1.8

Lance 3	Rango	Media	Mediana	Moda	Dv estándar	Varianza
Pintadilla	23 - 27	24.5	24.0	24.0	1.1	1.1


Lance 4	Rango	Media	Mediana	Moda	Dv estándar	Varianza
Cabrilla	20 - 29	24.3	24.0	24.0	2.5	6.3
Cabinza	23 - 25	24.0	24.0	23.0	1.0	1.0

Índice de diversidad Shannon-Wiener.

Para el mes de abril, el índice de diversidad de Shannon Wiener (H') varió entre 1,12 (bits/ind) hasta 2,26 (bits/ind). El lance más diverso fue el lance 4, que se realizó en la zona de Bayóvar.

Para el mes de julio la zona de Bayóvar presentó un valor de 1,7 bits/ind. (Figura 3.4.3.2-25).

Figura 3.4.3.2-25. Índice de diversidad de. Pesca experimental realizada en el area de estudio ,2012.

3.4.3.2.1.6 Conclusiones

- La cantidad de fitoplancton Bayóvar varió desde 0.29 ml /m³ (estación BA-01) hasta 2.16 ml /m³. (estación BA-09).
- Se registraron 47 especies en abril y 35 en julio.
- Los índices de Shannon y Margalef indicaron una diversidad media en abril y baja en julio. Los valores del índice de Simpson fueron mayores en abril. En cuanto al índice de Pielou indicaron dominancia de algunas especies en ambos periodos
- La densidad promedio de fitoplancton fue menor también en abril que en julio, registrándose 1 427 células /L y 165 células /L, respectivamente.
- En Bayóvar, las densidades son menores a 10m que a nivel superficial y fueron semejantes en ambas evaluaciones., mientras que a 20m la densidad promedio en julio fue menor.
- En abril no se registraron especies del fitoplancton en las estaciones BA-08 y
 BA-11y en julio no se registraron especies en las estaciones BA-02 y BA-12.
- En Bayóvar el máximo de especies por estación fue bajo, presentando un máximo de 5 en abril y 3 en julio.
- La densidad fluctuó desde 541 ind/100m³ hasta 28 965 ind/100m³. En julio las densidades fluctuaron desde 1 397 ind/100m³ hasta 48 089 ind/100m³
- El copépodo Acartia tonsa fue la especie más abundante en ambas evaluaciones
- En abril se registraron 35 especies y 42 especies en julio. El phylum Crustacea fue el más diverso, destacando los copépodos copépodos Acartia tonsa y Paracalanus parvus que se registraron todas las estaciones.
- El índice de riqueza de especies de Margalef y Shannon indican baja diversidad en la zona evaluada en ambas temporadas. El índice de diversidad de Shannon-Wiener (H') mostró valores medios.
- El índice de diversidad de Simpson (1-λ) presentó valores superiores en julio que en abril

- Según los valores de Pielou, en el mes de abril se presentó una fuerte dominancia y en el mes de julio, los valores son mayores, encontrándose especies que comparten la abundancia y haciendo a la comunidad más diversa.
- Se registraron 75 especies. El phylum Annelida presentó 37 especies,
 seguido del Mollusca con 16 especies y Artropoda con 13 especies
- En julio se registraron 71 especies, pertenecientes a 7 phyla. El phylum
 Annelida registró 46 especies seguido del phylum Artrópoda con 11 especies
- Los valores de densidad promedio en el mes de abril variaron desde 120 individuos/m² en la estación BA-07 hasta 2 446 individuos/m² en la estación BA-06. En julio los valores de densidad variaron desde 127 individuos/m² en la estación BA-09 hasta 2773 individuos/m² en la estación BA-09.
- En julio las especies que presentaron mayores densidades fueron las especies Brachiocapitella abranchiata y Mediomastus branchiferus que fueron muy abundantes en las estaciones BA-07 y BA-10.
- La biomasa promedio del área de Bayóvar, en el mes de abril fue de 169.2558 g/m². En julio el promedio de la biomasa fue de 106.2168 g/m².
- En julio los valores del índice de Margalef fueron mayores con respecto a abril. Indicando una comunidad con riqueza media.
- El índice de diversidad de Shannon-Wiener y Simpson (1-λ) en abril y julio indican una diversidad mediana
- Los valores de equidad de Pielou son más altos en julio, gracias al mayor número de especies que presentan grandes abundancias.
- En abril se reportaron 15 en Bayóvar, mientras que en julio se capturó especies en en la misma zona.
- En abril, en Bayóvar, el mayor porcentaje de captura correspondió también a lisa con el 48.6%, seguido de san Pedro con 23.7% y cachema con 8%.
- En julio, frente a Bayóvar, la pintadilla representó el 75.2% de las capturas, seguido de la lisa con 6.8% y cabinza con 5.7%.

 En general la zona presenta una baja diversidad de peces. En abril el índice de diversidad en Bayóvar fue de 1.91 (bits/ind), mientras que en julio fue de 1.7%(bits/ind)

3.4.3.2.1.7 Bibliografía

- Berrú, P., A. Tresierra, A. Taype, V. García. 2003. Prospección bioceanográfica para la determinación de bancos naturales de invertebrados marinos comerciales y zonas de pesca artesanal en Isla Chao, Islas Guañape y Ensenada de Guañape (4 - 7 de julio del 2003). Inf. Int. Inst. Mar Perú Chimbote. 37 pp.
- Gutierrez, D., K. Aronés, F. Chang, L. Quipúcoa y P. Villanueva. 2005. Impacto de la variación oceanográfica estacional e interanual sobre los ensambles de microfitoplancton, mesozooplancton, ictioplancton y macrozoobentos de dos áreas costeras del norte del Perú entre 1994 y 2002. Bol. Instituto del Mar del Perú- Callao, Vol. 22 / Nos. 1 y 2.
- Hernández, E., A. Palma & F. Ojeda. 2003. Larval fish assemblages in nearshore coastal waters off central Chile: temporal and spatial patterns. Rev. Estuarine, Coastal and Shelf Science. 56: 1075 –1092.
- Hutchings P. 1998. Biodiversity and functioning of polychaetes in benthic sediments. Biodiversity and Conservation 7: 1133-1145.
- Lagos, N. A., F. J. Tapia, S. A. Navarrete, and J. C. Castilla. 2007. Spatial synchrony in recruitment of intertidal invertebrates along central Chile. Marine Ecology Progress Series 350:29–39.
- Navarrete SA, Broitman B, Wieters EA, Finke GR, Venegas RM (2002)
 Recruitment of intertidal invertebrates in the southeast Pacific: interannual variability and the 1997–1998 El Niño. Limnol Oceanogr 47:791–802
- Oliva, E. 1997. Variabilidad intra e interanual de la estructura comunitaria del zooplancton en el área de surgencia costera del norte de Chile (20,50°S-22,00°S): 1990-1992. Tesis Magister en Ciencias del Mar. Universidad de Oriente.

- Sameoto, D. 1981. Horizontal and vertical distributions of zooplankton numbers and biomass off the coast of Peru. Bol. Inst. Mar Perú Callao. Vol. Extraordinario, ICANE, 164-170 Vidal, J. 1968.. Gayana (Zool.), 15:1-101.
- Tarazona, J. 1990. Disturbance and stress associated to El Niño and their signifi cance for the macrobentos of shallow areas of the peruvian upwelling ecosystem. Ph.D. thesis. University of Bremen. 181 pp.

3.4.3.2.2 Aves y Mamíferos Marinos

3.4.3.2.2.1 Introducción

La Fauna marina formada por aves y mamíferos marinos forma el grupo de depredadores ubicados en la cima de la pirámide trófica en el mar peruano. El número de especies de mamíferos registrados en aguas peruanas totalizan 30 especies de cetáceos, dos especies de pinnípedos y uno de mustélidos (Sánchez y Arias-Schreiber, 1998). El número de aves marinas registradas llega a 82 especies, de las cuales 12 son especies endémicas (Jahncke, 1998). Las aves marinas obtienen su alimento del mar y contribuyen con sus excretas a los ciclos de energía del ecosistema marino (Ainley 1980; en Schlatter & Simeone 1999). De las siete especies de tortugas marinas existentes en el mundo cinco de ellas tienen como hábitat de desarrollo y forrajeo las aguas peruanas (Hays-Brown y Brown, 1982).

La importancia del estudio de las aves marinas está en ser especies claves en los ecosistemas pelágicos y costeros (Schreiber & Burger, 2002, Schlatter & Simeone, 1999), siendo especies muy sensibles a la disponibilidad de alimento y de la presencia de contaminantes dentro de estos ecosistemas (Furness & Camphuysen, 1997).

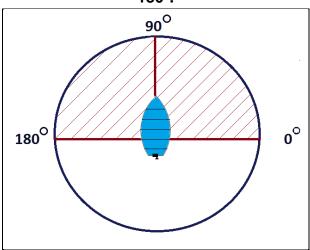
El conocimiento de mamíferos muestra vacio de información respecto a la distribución y abundancia de la mayoría de las especies. Históricamente las poblaciones de cetáceos fueron explotadas y sus poblaciones empezaron a decaer hasta que la cacería de ballenas fue totalmente prohibida en 1966 (Chapman, 1974). Pero la actividad humana y pesquera aún afecta a estos mamíferos marinos a través de la competencia por el recursos, ya que los peces su principal presa son objeto de una gran pesquería.

Todo lo anterior hace que los estudios de aves, mamíferos y tortugas marinas sean importantes para evaluar los impactos sobre su hábitat. El conocimiento del estado de sus poblaciones es necesario para la toma de decisiones sobre el manejo sobre este grupo.

Las razones para la evaluación de aves marinas es que son relativamente fáciles de reconocer, localizar y contabilizar, son depredadores importantes en los ecosistemas marinos, son excelentes indicadores de la salud del ecosistema. Son organismos que se pueden relacionar con los cambios oceanográficos y de productividad ya que influye en su distribución, por todo lo anterior se considera que son especies clave.

3.4.3.2.2.2 Metodología

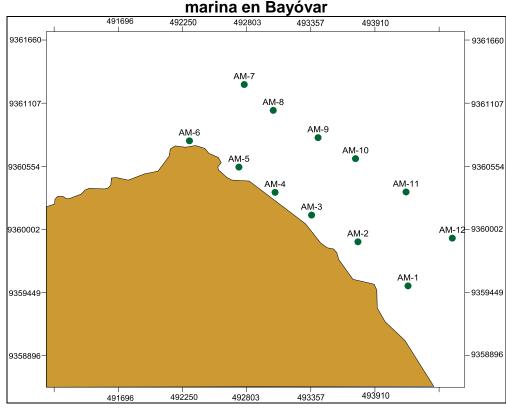
A. Registro de Aves, Mamíferos y Tortugas marinas


Las observaciones y registro de aves, mamíferos y tortugas marinas se realizaron por mar usando una embarcación de pesca artesanal con motor fuera de borda. El área de estudio se ubicó en la zona de Bayovar en dirección a Punta Aguja. Los registros para la primera evaluación se realizaron entre el 23 al 29 de abril del 2012, mientras que la evaluación de julio se llevó a cabo entre el 2 al 6 de julio. Los censos se realizaron entre las 7:00 am hasta las 15:00 h.

La metodología utilizada para el inventario de la fauna marina, así como su cuantificación fue el de método de conteo por punto, para el cual el observador se ubica en la proa de la embarcación y se registra las especies que se encuentran a menos de 300 m del barco en un ángulo de 180°.

Para los registros se utilizaron binoculares 10x50 marca Nikon y un GPS marca Garmin eTrex Venture HC. Para la identificación de las especies de aves se utilizaron las siguientes guías de campo: Aves de Perú (Schulenberg, T et al. 2010), Seabirds of the world (Harrison, P. 1996) y Shorebirds, And identification

guide (Hayman, P. 1986). Para identificar los mamíferos marinos se usa la Guía de los mamíferos marinos del mundo (Reeves,R. 2005) y Mamíferos acuáticos de Sudamérica y Antártica (Bastida,R. 2007). El plano **830MA0001A-010-20-027** muestra la ubicación de los sitilos de muestreo de fauna marina.


Figura 3.4.3.2-26. Observaciones hechas desde la embarcación, cubriendo 180º.

Fuente: BISA, 2012

Cuadro 3.4.3.2-20. Ubicación de los puntos evaluados para el censo de fauna marina en Bayovar.

Puntos de	Coordenadas UTM WSG 84				
evaluación	Norte	Este			
AM-1	9 359 508	494 196			
AM-2	9 359 894	493 764			
AM-3	9 360128	493 364			
AM-4	9 360 327	493 049			
AM-5	9 360 548	492 737			
AM-6	9 360 778	492 310			
AM-7	9 361 271	492 783			
AM-8	9 361 045	493 033			
AM-9	9 360 806	493 420			
AM-10	9 360 622	493 743			
AM-11	9 360 330	494179			
AM-12	9 359 926	494 578			

Figura 3.4.3.2-27. Distribuciones de los puntos de muestreo para fauna

Fuente: BISA, 2012

3.4.3.2.2.3 Análisis de datos

Los datos recolectados son utilizados para obtener los índices de de diversidad de Shannon-Wiener, índice de diversidad de Simpson, índice de riqueza de especies de Margalef, y valores de equidad usando Pielou. Para la determinación del los parámetros comunitarios se utilizó la metodología descrita por Magurran (1991).

A. índice de Diversidad de Shannon-Wiener

Es la medida del grado de incertidumbre que existe para predecir la especie a la cual pertenece un individuo extraído aleatoriamente de la comunidad. Para un número dado de especies e individuos, la función tendrá un valor mínimo cuando

todos los individuos pertenecen a una misma especie y un valor máximo cuando todas las especies tengan la misma cantidad de individuos.

$$H' = -\sum (n_i / N) \log_2(n_i / N)$$

Los valores que se obtiene con este índice generalmente están entre 1.5 y 3.5 y raramente sobrepasa a 4.5.

B. Índice de Diversidad de Simpson

Como el índice de Simpson mide la dominancia dentro de una comunidad, por tal motivo deberá restarse de 1 para estimar la diversidad

$$D = 1 - \Sigma(Pi)^2 = 1-\lambda$$

Una característica de Simpson es su sensibilidad a los cambios en las especies abundantes. Es útil para el monitoreo ambiental, que miden la variación de las especies más abundantes por alguna perturbación. Los valores de la diversidad según Simpson se dan dentro de una escala de 0 a 1; siendo mayor cuando se aproxima a uno y menor al acercarse a cero, lo que indicaría mayor dominancia.

C. Índice de Equitabilidad de Pielou

Mide la proporción de la diversidad observada con relación a la máxima diversidad esperada.

Este índice mide la equitatividad con el cual los individuos son divididos entre los taxa presentes.

D. Índice de riqueza de Margalef

Entre los índices de riqueza es uno de los más usados, ya que proporcionan una expresión compresible e instantánea de la diversidad.

$$d = (S - 1) / log_2 N$$

Este índice permite estimar la riqueza de especies con base en la distribución numérica de los individuos de las diferentes especies en función del número de individuos existentes en la muestra analizada.

E. Determinación del Estado de Conservación

Para la determinación del estatus de conservación de las especies registradas se utilizaron listas nacionales e internacionales de especies amenazadas.

El DS N° 034-2004-AG del Ministerio de Agricultura presenta un listado de las especies de fauna peruana amenazadas, considerando cuatro categorías: En Peligro Crítico (CR), En Peligro (EN), Vulnerable (VU) y Casi Amenazado (NT).

La Lista Roja para las Especies Amenazadas de la Unión Internacional para la Conservación de la Naturaleza UICN (2012). La UICN hace un inventario de la situación de amenaza en que se presenta las especies catalogándola en 7 categorías, de las cuales 4 categorías son consideradas para el presente estudio: Críticamente Amenazada (CR), Amenazada (EN) y Vulnerable (VU) y Casi Amenazada (NT).

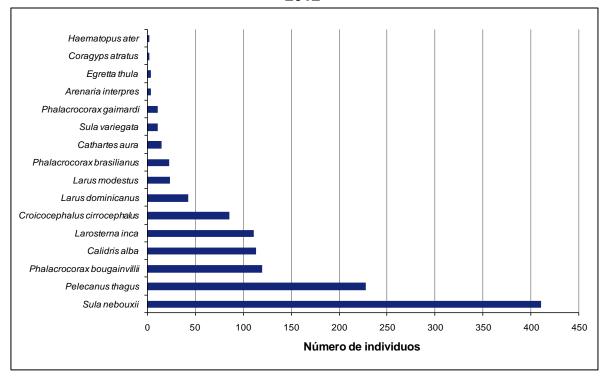
El listado de especies CITES Perú de Fauna Silvestre 2011. La Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES) en su Apéndice I incluye especies que están en peligro de extinción y que son o pueden ser amenazadas por el comercio, en el Apéndice II se considera a las especies que sin estar en peligro de extinción, pueden llegar a

estarlo de no ejercerse un control sobre su comercio y en su apéndice III incluye especies propuestas por algunos países por encontrarse sus poblaciones en peligro o amenazadas dentro de su jurisdicción

3.4.3.2.2.4 Resultados

A. Aves

La evaluación realizada en la zona costera de Bayovar en abril y julio del 2012. Durante el mes de abril se observó la presencia de especies migratorias del hemisferio norte como: *Calidris alba*, *Arenaria interpres, Charadrius alexandrinus*, especies que migran durante el invierno del hemisferio norte hacia el sur.


a.1) Composición de especies y abundancia en Bayovar

El registro de aves en las dos temporadas sumó un total de 16 especies, distribuidas en 4 órdenes y 8 familias.

En abril del 2012 se registraron 16 especies y un total de 1209 individuos registrados. La especie más abundante fue el "camanay" o "piquero de patas azules" *Sula nebouxii* con 411 individuos, equivalente al 34% de los registros.

El segundo lugar fue para el "pelícano peruano" *Pelecanus thagus* con 228 individuos censados (19% del total).

Figura 3.4.3.2-28. Abundancia de aves marinas registrada en Bayovar, abril 2012

Cuadro 3.4.3.2-21. Lista de especies registrada en el área de estudio, 2012.

ODEN/FAMILIA	ESPECIE	NOMBRE COMUN	NOMBRE EN INGLES	BAYOVAR
PODICIPEDIFORM	IES			
Podicipedidae	Podiceps major	Zambullidor Grande	Great Grebe	
SULIFORMES				•
Fregatidae	Fregata magnificens	Fregata Magnifica (Tijereta)	Magnificens frigatebird	
Sulidae	Sula nebouxii	Piquero Patas Azules (Camanay)	Blue-Footed booby	Х
	Sula variegata	Piquero Peruano	Peruvian Booby	X
	Phalacrocorax bougainvillii	Cormorán Guanay	Guanay Cormorant	Х
Phalacrocoracidae	Phalacrocorax gaimardi	Cormorán de Pata Roja (Chuita)	Red-legged Cormorant	Х
	Phalacrocorax brasilianus	Cormorán Neotropical (Cushuri)	Neotropic Cormorant	X
PELECANIFORME	S			
Pelecanidae	Pelecanus thagus	Pelícano Peruano	Peruvian Pelican	Х
Ardeidae	Egretta thula	Garcita Blanca	Snowy Egret	Х
ACCIPITRIFORME	S			
Cathartidae	Cathartes aura	Gallinazo Cabeza Roja	Turkey Vulture	Х
Cathartidae	Coragyps atratus	Gallinazo de Cabeza Negra	Black Vulture	Х
CHARADRIIFORM	ES			
Charadriidae	Charadrius alexandrinus	Chorlo nevado	Snowy Plover	
Haematopodidae	Haematopus ater	Ostrero Neguzco	Blackih Oystercather	Х
Caalamaaidaa	Arenaria interpres	Vuelvepiedras rojizo	Rudy turnstone	Х
Scolopacidae	Calidris alba	Playerito arenero	Sanderling	X
	Croicocephalus cirrocephalus	Gaviota Capucho Gris	Grey-headed gull	Х
l avida a	Larus dominicanus	Gaviota dominicana	Kelp Gull	Х
Laridae	Larus modestus	Gaviota gris	Grey Gull	Х
	Larosterna inca	Zarcillo o gaviotín monja	Inca Tern	Х

^{1.} Posición taxonómica y nombre en inglés según Clements (2008). 2. Nombres científicos y en español según Schulenberg et al (2010).

En tercer en la abundancia la presentó el 'guanay" *Phalacrocorax bougainvillii* con 120 individuos (10% de los registros), mientras que el "playerito arenero" *Calidris alba* con 114 y el "zarcillo" *Larosterna inca* representaron con 111 individuos representaron el 9% de los registros (Fig. 3.4.3.2-48). La mayoría de los registros correspondieron a la zona de orilla donde descansaba la mayoría de las especies; los "pelicanos", el "camanay" y el "guanay" se ubicaron en los roqueríos cercanos a los puntos AM3, AM4, AM5 y AM6, esta zona forma un acantilado que en su cima forma una terraza que es aprovechado como zona de descanso de las aves marinas.

En Julio del 2012 se registraron 14 especies y un total de 1382 individuos. La especie más abundante fue el "piquero de patas azules" *Sula nebouxii* con 495 individuos equivalente al 36% del total.

Haematopus ater
Phalacrocorax gaimardi
Egretta thula
Larus modestus
Sula variegata
Croicocephalus.
Cathartes aura
Phalacrocorax brasilianus
Calidris alba
Pelecanus thagus
Larosterna inca
Phalacrocorax bougainvilli
Sula nebouxii

Figura 3.4.3.2-29. Abundancia de aves marinas registrada en Bayovar, julio 2012

Fuente: BISA, 2012

O

50

100

150

200

250

Número de individuos

300

350

400

450

500

El "guanay" *Phalacrocorax bougainvillii* con 290 individuos representó el 21% de la avifauna y el "zarcillo" *Larosterna inca* con el 19% (fig.3.4.3.2-49). Esta especie se ubicó cerca de las estaciones AM1, y AM2, que se encuentran próximas a las instalaciones del muelle de Petroperu y de Vale, y que son usadas como lugares de descanso por estas aves y por otras como el "cushuri" *Phalacrocorax brasilianus* y del "piquero peruano" *Sula variegata*. El "pelícano peruano" *Pelecanus thagus* con 162 individuos representó 12% de las aves registradas en Bayovar durante el mes de julio.

Comparando ambas temporadas de evaluación se observa que la mayor abundancia correspondió al "piquero de patas azules" Sula nebouxii.

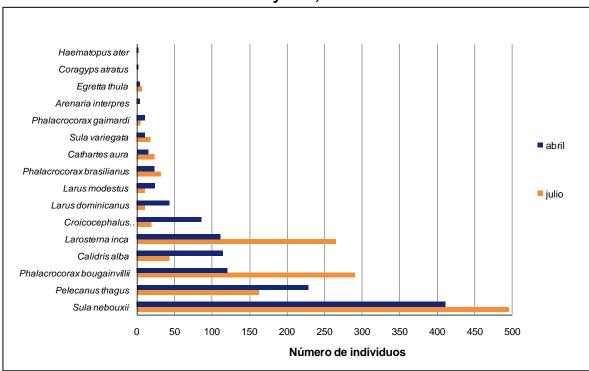


Figura 3.4.3.2-30. Comparación de abundancia de aves marinas registradas en Bayovar, 2012

Fuente: BISA, 2012

El "piquero de patas azules" o "camanay" es una importante especie guanera. El segundo en abundancia de la familia Sulidae en el Perú después del piquero. A

diferencia del piquero su distribución se registra más al norte, donde llega a alcanzar grandes poblaciones y se reproduce gracias a la protección que reciben en las Islas Lobos de Tierra y Lobos de Afuera.

En la primera temporada el "pelícano peruano" *Pelecanus thagus* ocupó el segundo lugar en abundancia pero en julio su posición fue desplazada por el "guanay" *Phalacrocorax bougainvillii*, esta especie fue durante muchos tiempo la más importante especie guanera mas importante en el Perú, aunque en los últimos años ha sido el "piquero peruano" el que registra la mayor abundancia (Valverde& García 2009). El guanay es una especie que se alimenta buceando, estando su dieta principalmente constituida por la anchoveta. La dependencia de la anchoveta es tan grande para el guanay y el piquero se desplazan detrás de este recurso siendo por ello utilizadas por el IMARPE como indicadoras de la abundancia y distribución de anchoveta en el mar peruano (Jahncke y Goya, 1998). Durante los eventos El Niño que se caracteriza por presentar una disminución de la anchoveta produce que las aves abandonan sus lugares de reproducción con huevos e incluso con crías. La anchoveta es muy importante para el éxito reproductivo del piquero y del guanay por el gran valor nutritivo de esta especie.

a.3) Estatus de conservación

De las 19 especies de aves registradas 5 se encuentran dentro de alguna lista de protección nacional o internacional. En el Perú el D.S.034-2004AG considera que las especies que se encuentran en peligro (EN) son: el "piquero peruano", el "guanay", el "pelícano peruano" y la "chuita". Las tres primeras especies son aves guaneras que fueron protegidas anteriormente por la compañía explotadora del guano PROABONOS y que desde el 2009 son protegidas por SERNANP (Servicio Nacional de Áreas Naturales Protegidas por el Estado Peruano), ya que la administración de las islas y puntas guaneras ha recaído sobre esta institución.

La "chuita" es protegida por ser una especie con una baja población, que a diferencia del guanay, esta de costumbre solitaria.

Dentro de la lista de la Unión Internacional para la Naturaleza (UICN), las poblaciones de las especies arriba mencionadas, excepto el piquero se encuentran en estado de NT (Casi Amenazadas). Por el contrario ninguna de las especies registradas se encuentran dentro de la lista CITES, por ser especies que no están amenazadas por alguna presión comercial.

Cuadro 3.4.3.2- 22. Categoría de conservación de aves marinas de la zona de estudio,2012.

ESPECIE	NOMBRE COMUN	D.S.034- 2004AG	UICN	CITES
Sula variegata	Piquero Peruano	EN		
Phalacrocorax bougainvillii	Cormorán Guanay	EN	NT	
Phalacrocorax gaimardi	Cormorán de Pata Roja (Chuita)	EN	NT	
Pelecanus thagus	Pelícano Peruano	EN	NT	
Larosterna inca	Zarcillo o Gaviotin monja	VU	NT	

D.S.034-2004AG del Ministerio de Agricultura.

a.4) Parámetros comunitarios

Los valores comunitarios en Bayovar se muestran en la cuadro 3.4.3.2-23 Se ha comparado los valores de las dos temporadas. La figura 3.4.3.2-31 muestra las comparaciones entre las dos evaluaciones.

Cuadro 3.4.3.2-23. Parámetros comunitarios de Bayovar, 2012.

Fechas de evaluación	S	N	d	J'	H'	1-λ
abril-2012	16	1209	2.113	0.725	2.902	0.814
julio-2012	14	1382	1.798	0.671	2.556	0.775

² S=número de especies, N=número de individuos, d=riqueza de especies de Margalef, J=equitatividad de Pielou y H' Diversidad de Shannon -Wiener.

UICN Unión Internacional para la Naturaleza (Lista Roja de Especies Amenazadas).

CITES Convención sobre Comercio Internacional de Especies amenazadas de la Fauna y Flora Silvestres.

EN=En Peligro, VU= Vulnerable, NT= Casi Amenazada

El índice de riqueza de especies de Margalef (d) mostró un mayor valor en abril con 2.113, mientras que en julio el valor fue de 1.798, esto coincide con el mayor número de especies registradas en abril (16), mientras que en julio el número de especies fue menor con 14 especies.

Los valores de equitatividad (J') en ambas evaluaciones muestran que las poblaciones de avifauna están representadas de tal manera que no se aprecia una dominancia marcada de alguna especie, sin embargo la mayor homogeneidad se da en abril con un valor de 0.725.

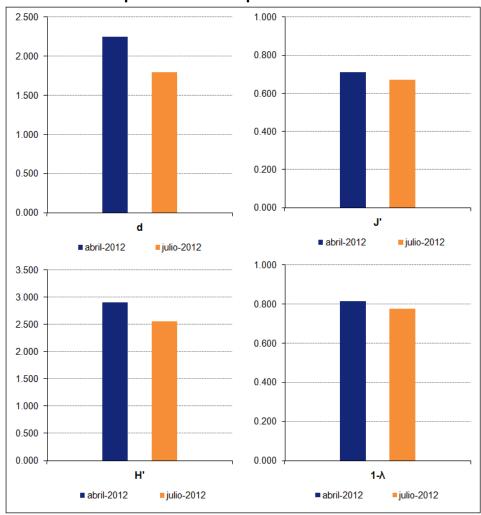


Figura 3.4.3.2-31. Comparación de los parámetros comunitarios de Bayovar.

El índice de diversidad (H') muestra un mayor valor en abril con 2.902 bits/individuo, mostrando una ligera disminución en julio con 2.556 bits/individuo. El índice de Simpson (1-λ) también muestra que el mayor valor de diversidad se dio en abril (0.814), mientras que en julio disminuye (0.775).

Los valores de similaridad de Bray-Curtis con transformación de log(X+1) nos da resultados de 87.12% de similaridad entre las dos temporadas.

B. Mamíferos

Durante la evaluación se registró la presencia del "lobo chusco" *Otaria flavescens* (Shaw, 1800) en ambas evaluaciones y en zonas de estudio. En Bayóvar se les observó cerca a los botes de pesca artesanal. Algunos ejemplares juveniles fueron observados en la orilla rocosa descansando. El lobo chusco pertenece al Orden Carnívora, Sub orden Pinnipedia (que agrupa a los mamíferos acuáticos) y a la familia Otariidae. El "lobo chusco" *Otaria flavescens* se distribuye en la costa del Océano Pacifico desde el Ecuador hasta el sur de Chile.

El "lobo chusco" se caracteriza por tener una sola capa de pelo, mientras que el lobo fino (el otro lobo peruano) presenta 2 capas de pelo. El macho adulto es de mayor tamaño que el fino y puede medir hasta 2.5 m y pesar hasta 500 kg. Los ejemplares avistados fueron en su mayoría juveniles y hembras y algunos de machos adultos. Se les encuentra frecuentemente cerca de las embarcaciones durante las faenas de pesca a la espera de alguna presa. Su alimentación está basada a partir de peces e invertebrados. La anchoveta es su principal alimento observándose que severas fluctuaciones en este recurso pueden causar una alta mortalidad y falla reproductiva. Esto se observa durante los Eventos El Niño, durante el cual la anchoveta se profundiza o se aleja al sur, teniendo las hembras que alejarse más tiempo para capturar sus presas, por ello se observa que las hembras deben abandonar sus crías o muchas de ellas sufren abortos (Soto K. et al 2004).

Los lobos marinos son especies que se encuentran bajo protección de la ley peruana DS N° 034-2004-AG, la cual considera al "lobo chusco" como especie con una población vulnerable. La UICN coloca al lobo chusco dentro de la categoría de Preocupación Menor (LC).

Cuadro 3.4.3.2-24. Avistamiento de mamíferos marinos en el área de estudio 2012.

	BAYOVAR			
ESPECIE	Evaluación. Abril	Evaluación. Julio		
Otaria flavescens	7	11		

Fuente: BISA, 2012

C. Tortugas marinas

Se registró la presencia de la "tortuga verde" *Chelonia mydas* (Linnaeus, 1758), perteneciente a la familia Cheloniidae, en la zona de Bayovar, Puerto Rico y cerca al muelle Petro Peru. La tortuga verde es llamada así por el color de su grasa. Esta especie es frecuentemente reportada en la zona de Piura, distribuyéndose hacia el sur y toda la costa norte, donde se alimenta y desarrollan los juveniles de esta especie (Kelez *et al.*, 2003).

Por su ecología y hábitos alimenticios, las tortugas marinas interactúan frecuentemente con diversas artes de pesca lo que da lugar a capturas incidentales

En la actualidad todas las especies de tortugas marinas se encuentran en la Lista Roja de Especies Amenazadas de la UICN (UICN, 2012). La legislación peruana mediante el D.S.034-2004AG protege a todas las especies de tortugas marinas registradas en el Perú, las cuales se encuentran en situación de peligro o peligro crítico. Actualmente el Perú es signatario de la Convención Interamericana para la Protección y Conservación de las Tortugas Marinas (CIT), por lo que ha adquirido

compromisos internacionales para asegurar su conservación desde un punto de vista regional. De acuerdo a CITES apéndice I todas las especies de la familia Cheloniidae están protegidas.

3.4.3.2.2.5 Conclusiones

- Durante la evaluación de abril se observó la presencia de aves migratorias del hemisferio norte como: Calidris alba, Arenaria interpres, Charadrius alexandrinus.
- Se registra una mayor cantidad de especies de aves en abril para ambas zonas, mientras que las mayores abundancias se registran en julio.
- Durante la evaluación del mes de abril se registraron en Bayovar 16 especies y 1209 individuos. La mayor abundancia en esta zona la registró el "piquero patas azules" sula nebouxii, con el 34% de los registros, seguidos por el "pelícano peruano" y el "guanay" con el 19% y 10%, respectivamente.
- En la evaluación de julio en Bayovar se registraron 14 especies de aves y 1382 individuos. La especie más abundante fue el "piquero de patas azules" con el 36% de los registros, seguidos por "guanay" (21%) y el "zarcillo' (19%).
- De las especies de aves registradas 5 se registran protegidas por la ley peruana, ubicándose dentro de la categoría EN (En Peligro) las especies: "guanay", "piquero peruano", "pelícano peruano" y "chuita", mientras que el zarcillo se encentra en la categoría de VU (Vulnerable).
- De acuerdo a la Lista Roja de Especies amenazadas IUCN-2012 el "guanay", la "chuita", el "pelícano" y el "zarcillo" se encuentran en la categoría NT (casi amenazadas).
- Ninguna de las especies de aves registradas se encuentra en el CITES Perú -2011.
- En cuanto a mamíferos marinos solo se registró la presencia del "lobo chusco" Otaria flavescens. Las densidades de lobo chusco fueron bajas

- registrándose 7 y 11 individuos en Bayovar para las evaluaciones de abril y julio respectivamente.
- El DS Nº 034-2004-AG protege al lobo chusco por considerarlo como una especie de población vulnerable. La Lista Roja de Especies Amenazadas IUCN-2012 no considera al "lobo chusco" como una especie de amenazada y lo incluye como una especie de preocupación menor (LC).
- La única especie de tortugas registrada en ambas evaluaciones fue la "tortuga verde" Chelonia mydas, la cual es considerada por la legislación peruana (D.S.034-2004AG) y por el IUCN 2012 como una especie En peligro. La lista CITES-Perú prohíbe la comercialización de cualquier especie de tortuga.

3.4.3.2.2.6 Bibliografía

- Bastida, R., Rodriguez, D., Secchi, E., da Silva, V. 2007. Mamíferos acuáticos de Sudamérica y Antártida. 1º ed. Vázquez Mazzini Editores, Buenos Aires.
- Buckland, S. T., Anderson, D. R., Burnham, K. P., and Laake, J. L. 1993.
 Distance Sampling: Estimating Abundance of Biological Populations. London:
 Chapman and Hall.
- Clements, J.F. & N. Shany. 2001. A Field Guide to the Birds of Peru. California: Ibis Publishing Company.
- Clements, J. F., T. S. Schulenberg, M. J. Iliff, B.L. Sullivan, and C. L. Wood.
 2010. The Clements checklist of birds of the world: Version 6.5. Cornell
 University Press. Downloadable from Cornell Lab of Ornithology
- Harrison, P. 1996. Seabirds, an identification guide. Christopher Helm Pu. London.
- Hayman, P. 1986. Shorebirds, An identification guide. Houghton Mifflin Company. Boston
- IUCN (International Union for Conservation of Nature). 2012. (en línea). IUCN
 Red List of Threatened Species. Version 2012.1. <www.iucnredlist.org >.

- Jahncke, J. 1998 Las poblaciones de aves guaneras y sus relaciones con la abundancia de anchoveta y la ocurrencia de eventos El Nino en el Mar Peruano. Boletín del Instituto del Mar del Perú 17(1-2): 1-13.
- Jahcke, J. & e. Goya 1998. Las dietas del guanay y del piquero peruano como indicadoras de la abundancia y distribución de la anchoveta. Bol. Inst. del Mar del Perú Vol 17 (1-2) 15-33.
- Jefferson T. 1993. Marine mammals of the World.
- Soto K.: A. Trites & M. Arias-Schereiber (2004) The effects of prey availability on pup mortality and the timing of birth of South American sea lions (*Otaria flavescens*) in Peru. Journal Zoology ,Vol 264 , p. 419-428.
- Kelez, S.; X. Velez-Zuazo; & C. Manrique. 2003. New evidence on the loggerhead sea turtle *Caretta caretta* (Linnaeus 1758) in Peru. Ecología Aplicada. Vol. 2, Nº 1. p. 141-142.
- Magurran, A.E. 1991. Ecological Diversity and its Measurement. Chapman & Hall. New York.
- Mac Nally, R. & E. Fleishman. 2004. A successful predictive model of species richness bases on indicator species. Conserv. Biol. 18: 646-654.
- MINAM (Ministerio del Ambiente), 2011. Listado de Especies CITES Peruanas de Fauna Silvestre (Vol I).
- Niemelä, J. 2000. Biodiversity monitoring fordecision-making. Ann. Zool. Fennici.37: 307-317
- Sanchez,R. & Arias-Schreiber, M. 1998. Cetáceos observados frente a la costa peruana y su relación con la distribución y abundancia de los recursos pelágicos. Crucero BIC Humboldt 9809-09, de Paita a Callao. Informe IMARPE 141:55-66.
- SCHLATTER, R. & A. SIMEONE. 1999. Estado del conocimiento y conservación de las aves en mares chilenos. Estudios Oceanológicos, Chile. 18: 25-33.
- Schulenberg, Stotz, Lane, O'Neill & Parker 2010 Aves de Perú Serie en Biodiversidad CORBIDI. 460 pags.

- Stotz, D.F., Fitzpatrick, J.W., Parker, T.A. & D.K. Moskovits. 1996. Neotropical Birds: ecology and conservation. Chicago. Chicago University Press.
- Reeves, R. R., Stewart, B. S., Clapham, P. J., Powell, J. A. 2005. Guía de los Mamíferos Marinos del Mundo. National Audubon Society. Ediciones Omega, Barcelona.
- Valverde M. & M. García 2009. Aberración en la pigmentación del plumaje de las aves marinas de la costa peruana. The Biologist (Lima) 7: 99-101.

3.4.3.2.3 Bioacumulación de Peces

3.4.3.2.3.1 Introducción

Los metales pesados entran al ecosistema marino a través de diferentes vías: deposición atmosférica, como lo observado en el transporte de Pb, Cd, As, Cu y Zn (Pacyna 1991); transporte por ríos; lixiviación de las tierras agrícolas; erosión de las rocas y suelos y por fuentes antrópicos como minería, industria, etc. que producen de forma natural en la corteza terrestre. Algunos metales como el Zn, Cu y Se, son biológicamente esenciales para las funciones metabólicas; mientras que otros metales como Pb, Cd, Hg no parecen tener alguna función biológica en los organismos y son en consecuencia denominados elementos no esenciales. Los metales pesados no pueden ser degradados y por tanto tienden acumularse en los organismos. Los metales pesados se acumulan principalmente en los tejidos proteináceos por su alta afinidad por los grupos de azufre y sulfhidrilo de las proteínas.

Los niveles de contaminantes en los peces son de interés porque hay un riesgo potencial que los humanos consuman peces con metales pesados y esto conlleve a efectos nocivos en la salud. Estevensson en 1991 menciona que la dieta y alimentos de origen animal son fuentes predominantes de metales pesados. En general, el orden de acumulación de metales pesados en la red trófica es como sigue: capa biológica-sedimentos-invertebrados-peces (Deacon y Driver,1999). Los sedimentos en las zonas de surgencia son generalmente ricos en metales, pueden permanecer en superficie como resultado de la mezcla biológica (bioturbación) de los sedimentos por los invertebrados bentónicos, que a su vez son base de los peces bentófagos. Por lo consiguiente los metales pueden permanecer en contacto con la biota bentónica durante periodos más largos de tiempo que enterrados.

La acumulación de metales se transfiere a través de la cadena trófica y puede incluso llegar a ser tóxica cuando la acumulación en tejidos de los organismos alcanza niveles críticos (Fisher & Hook, 2002), por lo que hay que tener en cuenta los hábitos alimenticios y las posiciones y relaciones en la cadena trófica de las especies.

Las tramas tróficas en ambientes marinos y en especial en las zonas costeras tropicales son más complejas comparadas con los ecosistemas terrestres dulceacuícolas, debido a las numerosas especies involucradas y sus diferentes enlaces tróficos. (Zetina-Rejón, 2007).

La biocumulación de metales depende de factores bióticos: como la dimensión y masa del animal, la edad, el sexo, la dieta y el metabolismo y la posición en la cadena trófica; y de factores abióticos como distribución de los metales en el ambiente, la salinidad, la temperatura, el pH, el tipo de habitad y la interacción con otros metales. (Anna Jaminska et al 2011).

3.4.3.2.3.2 Objetivo

Determinar la concentración de metales pesados bioacumulados en peces e invertebrados en el área de Bayóvar

3.4.3.2.3.3 Materiales y Métodos

Las muestras de peces e invertebrados fueron colectados mediante redes de pesca y buceo. Se seleccionaron las especies más comunes en el área de estudio Bayóvar de acuerdo a sus hábitos alimenticios.

Las especies seleccionadas fueron:

 Mugil cephalus, "lisa", pez costero asociado a fondos blandos (arenofangosos) y de hábitos alimenticios detritívoro.

- Labrisomus philippii, "trambollo", pez asociado a orillas rocosas y de hábitos bentófagos
- Cheilodactylus variegatus, "pintadilla", especie costera asociada a orilla rocosa, es un pez carnívoro.
- Paralabrax humeralis, "cabrilla". pez bentopelágico asociado a sustrato rocoso y de hábitos carnívoros.
- Tagelus dombeii, "pico de pato", es bivalvo que se alimenta por suspensión, un hecho que podría estar relacionado con el tipo de sedimento disponible en el hábitat de las dos poblaciones estudiadas, que está compuesto principalmente por la fracción de arena.

Los organismos fueron colectados y conservados manteniendo la cadena de frío y evitando la contaminación de agentes externos hasta el laboratorio INSPECTORATE.

El análisis de metales en tejido fue hecho por ICP según protocolo de ensayo EPA 6020 Inductively Coupled Plasma Mass Spectrometry; Revision 0, Sptember 1994; Test Methods for Evaluating Solid Waste Physical Chemical Methods, SW 846 Method 7196 USGPO Washington DC 1987.

Para la comparación de los resultados se usó las referencias internacionales para concentraciones máximas de metales en tejidos de peces y mariscos de consumo humano. Ver detalles en el cuadro 3.4.3.2-25.

Cuadro 3.4.3.2-25. Estándares considerados para la Comparación de Metales en Tejido de Peces.

Parámetro	Canadian Food Inspection Agency ¹	ANVISA- Brasil ²	European Union (2008) ³	FAO / WHO ⁴	otros autores
Arsénico	3.5	1.0		-	
Cadmio		1.0	0.5		
Cromo					4.0 ⁶
Cobre					
Plomo	0.5	2.0	0.3	2.0	
Mercurio	0.5	0.5	0.5		
Níquel					1.0 ⁵
Zinc					

Canadian Food Inspection Agency. Fish Products Standards and Methods. 2009, Appendix 3 Canadian Guidelines for chemical contaminants and toxins in fish and products Fish Products Standards and Methods Manual.

- 2. Agencia Nacional de Vigilancia Sanitaria (ANVISA) Brasil.
- 3. The Commission of the European Communities, Commission Regulation (EC) No 629/2008.
- 4. Joint FAO/WHO Food standards programme codex committee on contaminants in foods, sixth session, Maastricht, The Netherlands, 26-30 march 2012.
- 5. WHO. 1991. Environmental health criteria: Nickel. World Health Organization, Geneva, 383 pp.
- 6. Eisler, R. 1986. Chromium hazards to fish, wildlife, and invertebrates: A synoptic review. Biological Report 85.Wildlife Research Center, U.S. Fish and Wildlife Service.

3.4.3.2.3.4 Resultados

La concentración de metales en los diferentes organismos evaluados se presenta en el cuadro Nº 2. Los metales seleccionados para su análisis detallado fueron As, Cd, Co, Cu, Cr, Fe, Mn, Hg, Ni, Pb, Se, Zn, fueron seleccionados por presentar efectos en los organismos acuáticos.

Arsénico

El arsénico es absorbido por los peces a través de las branquias, el tracto gastrointestinal y por la piel (Albert, 1977). Se acumula en el hígado, riñón, piel y escamas por la afinidad de los arsenitos por la queratina. El arsénico inorgánico se transforma en las branquias y músculo en arsénico orgánico liposoluble .e hidrosoluble (Lenihan y Fletcher, 1977).

Los valores encontrados en la zona de Sechura son menores al valor máximo propuesto por la ANVISA (1.0 mg/kg). En Bayóvar el mayor valor de arsénico fue encontrado en "lisa" *mugil cephalus* con 0.46 mg/kg. En hígado de "pintadilla" *Cheilodactylus variegatus* se aprecia una mayor concentración 0.23 mg/kg que en músculo con 0.10 mg/kg.

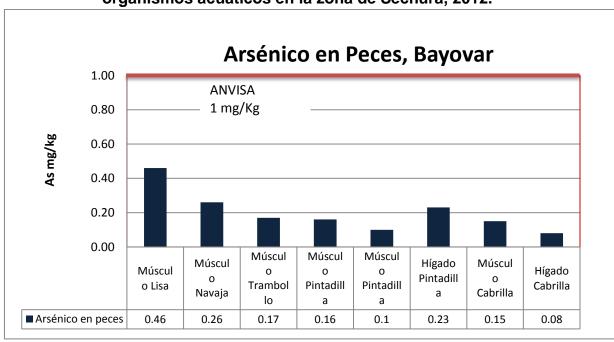


Figura 3.4.3.2-32. Concentración de Arsénico en músculo e hígado en organismos acuáticos en la zona de Sechura, 2012.

Fuente: BISA, 2012.

Cadmio (Cd)

En peces el Cd afecta a varios sistemas enzimáticos involucrados en la neurotransmisión, transporte transepitelial, metabolismo intermediario, actividad

antioxidante y oxidasas de función mixta. El mecanismo de acción más conocido es que el Cd interactúa con el metabolismo del Calcio, como respuesta los peces presentan hipocalcemia probablemente al inhibir la ingestión de Ca del agua. Sin embargo, elevadas concentraciones de Ca en el medio acuático protegen de la ingestión de Cd. (Hall *etal.*, 1998).

Varios estudios de toxicidad crónica realizados demuestran efectos tóxicos del Cd en peces a concentraciones tan bajas como 0,5 a 1 µg/L. (Wreng *et al.*, 1995).

Los valores reportados en Bayóvar en músculo de peces muestran valores menores al límite detección <0,02; en ningún caso sobrepasan los límites máximos de ANVISA (1mg/kg) ni la European Union (0.5 mg/kg). El valor de Cd en músculo de concha navaja "pico de pato" es mayor con 0.04 mg/kg, pero es menor que los limites de ANVISA y la European Union. La concentración de Cd en hígado de "pintadilla" *Cheilodactylus variegatus* fue de 0.56 mg/kg; en "cabrilla" *Paralabrax humeralis*, 3.16 mg/kg y en lisa *Mugil cephalus*, 0.52 mg/kg.

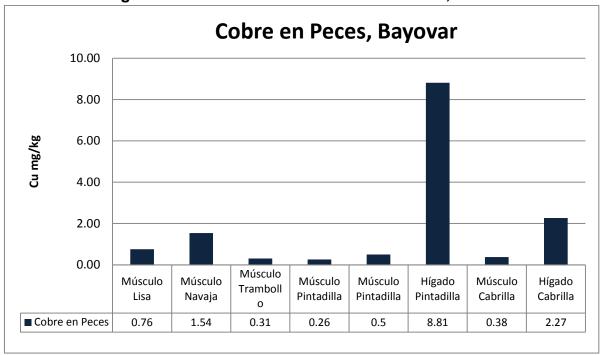
Cadmio en Peces, Bayovar 3.50 3.00 2.50 2.00 cd mg/kg 1.50 ANVISA 1 mg/Kg 1.00 Unión Europea 0,5 mg/Kg 0.50 0.00 Músculo Músculo Músculo Músculo Hígado Músculo Músculo Hígado Navaja Trambollo Pintadilla Pintadilla Pintadilla Cabrilla Cabrilla Lisa ■ Cadmio en peces 0.04 0 O O 0.56 0 3.16

Figura 3.4.3.2-33. Concentración de cadmio en músculo e hígado en organismos acuáticos en la zona de Sechura, 2012.

La concentración de Cd en hígado por encima de la concentración en branquias y músculo se ha observado en "truchas arco iris" (Melgar 1997). También valores más altos en hígado respecto a lo reportado en músculo se han encontrado en varias especies del mundo como en el "arenque del Pacifico" *Clupea harengus* con 30.6μ/g y en los peces del atlántico norte como *Brosme brosme, Sebastes marinus, Rienhardtius hippoglossoides*. Los valores de Cd en hígado estuvieron entre 1-12 μ/g (Stange 1996).

Cobre (Cu)

El Cu a bajas concentraciones es importante por formar parte de la proteína transportadora de oxígeno (Hemocianina), complejos enzimáticos como oxidoreductasas; pero es tóxico para la vida acuática en altas concentraciones. La toxicidad del Cu se atribuye sobre todo a la forma Cu²+ y, en menor frecuencia al CuOH+ (que es menos frecuente en el medio). El Cu²+ rápidamente forma complejos con las sustancias inorgánicas y orgánicas y se une a las partículas de materia orgánica. Como resultado, los iones de Cu raramente están en forma libre en el agua, excepto en aguas blandas y ácidas (Robinson y Avenant-Oldewage, 1997).


El Cu afecta a los peces causando daños en las branquias, riñón, tejido hematopoyético, mecanorreceptores, quimiorreceptores. El Cu²⁺ afecta los sitios activos de las enzimas y peroxidación de las membranas causando daño celular.

No se tiene regulación internacional de límites máximos de Cu en tejido de peces. Los valores de Cu en músculo de peces en Bayóvar mostraron a la "lisa" *Mugil cephalus* con una concentración de 0.76 mg/kg, seguido de la "pintadilla" *Cheilodactylus variegatus* con 0.50 mg/kg, "cabrilla" *Paralabrax humeralis* registró 0.38 mg/kg. La menor concentración fue de 0.31 g/kg en el trambollo *Labrisomus philippii*, el bivalvo *Tagelus dombeii* "pico de pato" presentó un valor de 1.54 mg/kg en músculo. En hígado las concentraciones fueron mayores, en pintadilla

Cheilodactylus variegatus se reportó una concentración de 8.81 mg/kg de Cu y en cabrilla, 2.27 mg/kg.

El patrón de acumulación de Cu muestra que se acumula en hígado mucho más que en musculo. Al haber exceso de Cu en el organismo este se une a enzimas especificas (metalotioneínas) presentes en el hígado, por lo que este órgano presentará mayor acumulación de Cu a diferencia de los demás órganos.

Figura 3.4.3.2-34. Concentración de cobre en músculo e hígado en organismos acuáticos en la zona de Sechura, 2012

Fuente: BISA, 2012

Cuadro 3.4.3.2-26. Concentración de metales en peces e invertebrados, Bayóvar 2012.

	ABRIL 2012 BAYÓVAR				JULIO 2012 BAYÓVAR				
Metales (mg/Kg)									
	0 ,	J	Labrisomus philippii	Cheilodactylus variegatus	Paralabrax hu		Cheilodactylus va	•	
	Músculo	Músculo	Músculo	Músculo	Músculo		Músculo		
Aluminio (AI)	1.28	1.79	1.04	0.87	2.75	3.26	1.45	117.10	
Antimonio (Sb)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	
Arsénico (As)	0.46	0.26	0.17	0.16	0.15	0.08	0.10	0.23	
Bario (Ba)	0.32	0.23	<0,04	<0,04	0.05	0.07	0.05	1.03	
Berilio (Be)	<0,06	<0,06	<0,06	<0,06	<0,06	<0,06	<0,06	<0,06	
Bismuto (Bi)	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	
Boro (B)	0.30	1.12	0.13	0.43	0.25	0.41	0.29	1.13	
Cadmio (Cd)	<0,02	0.04	<0,02	<0,02	<0,02	3.16	<0,02	0.56	
Calcio (Ca)	660.52	1080.69	541.41	565.04	350.46	124.47	1177.57	1438.09	
Cesio (Ce)	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	0.09	
Cobalto (Co)	0.04	0.05	<0,02	<0,02	<0,02	0.02	<0,02	0.06	
Cobre (Cu)	0.76	1.54	0.31	0.26	0.38	2.27	0.50	8.81	
Cromo (Cr)	0.09	0.07	<0,05	0.05	0.08	0.08	<0,05	0.65	
Estaño (Sn)	0.12	0.19	0.14	0.12	<0,04	<0,04	<0,04	0.38	
Estroncio (Sr)	3.72	11.13	2.17	2.43	1.05	0.65	4.48	3.50	
Fósforo (P)	2436.40	1235.68	1622.60	2398.65	2615.18	2814.70	2304.25	2527.91	
Hierro (Fe)	14.28	29.70	7.84	5.11	7.85	288.20	6.16	85.14	
Litio (Li)	0.67	1.50	0.66	0.59	1.76	3.93	1.10	24.20	
Magnesio (Mg)	291.45	438.03	244.78	333.59	378.41	238.89	262.59	399.69	
Manganeso (Mn)	0.22	1.20	0.26	0.21	0.05	1.59	0.19	1.19	
Mercurio (Hg)	0.03	0.01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	
Molibdeno (Mo)	<0,02	0.05	<0,02	<0,02	<0,02	0.13	<0,02	0.15	
Níquel (Ni)	0.05	0.11	0.04	0.05	<0.04	<0,04	<0.04	0.31	
Plata (Ag)	<0,02	0.07	<0,02	<0,02	<0,02	<0,02	<0,02	0.08	
Plomo (Pb)	<0,02	<0,02	<0,02	<0,02	0.03	0.10	0.05	0.52	
Potasio (K)	3587.23	1139.33	2636.06	3626.13	4918.66	3181.39	3460.95	3225.63	
Selenio (Se)	<0,02		<0,02	0.02	<0.02	0.02	0.03	0.20	
Sodio (Na)	680.21	2214.81	906.68	939.55	1058.28	1392.86	1677.99	2409.16	
Talio (TI)	<0,03	<0,03	<0,03	<0.03	<0,03	<0,03	<0,03	<0,03	
Titanio (Ti)	8.08	4.50	5.03	7.59	9.64	8.21	7.37	13.60	
Torio (Th)	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10	
Uranio (U)	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	<0,03	
Vanadio (V)	0.88	0.68	0.75	0.50	<0,03	0.03	<0.03	<0,03	
Wolframio (W)	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	<0,50	
Zinc (Zn)	8.65	19.13	5.83	6.63	4.87	35.61	7.85	95.40	

Fuente: BISA, 2012

Cromo (Cr)

El Cromo es un metal pesado con potencial tóxico para los ecosistemas marinos, las escorrentías de las zonas urbanas son la principal fuente de Cr en el mar. En el mar el Cr se encuentra como Cr (III) y Cr (VI). La Bioacumulación ocurre principalmente a través de las branquias.

Cromo (Cr) 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 Músculo Músculo Músculo Músculo Músculo Hígado Músculo Hígado LISA NAVAJA TRAMBOYO PINTADILLA **PINTADILLA CABRILLA** ■ Cromo (Cr) 0.09 0.07 0.05 0.05 0.05 0.65 0.08 0.08

Figura 3.4.3.2-35. Concentración de cromo en músculo e hígado en organismos acuáticos en la zona de Sechura, 2012.

Fuente: BISA, 2012

El Cr no tiene función bioquímica conocida. No se tienen norma internacional que regule los valores máximos de Cr en músculo de organismos acuáticos.

En Bayóvar, la máxima concentración de cromo se registró en zona en el músculo de "lisa" con 0.09 mg/kg.

Los valores de Cr en hígado son similares a los valores de Cr en músculo.

Hierro (Fe)

El hierro es un metal importante en la síntesis de hemoglobina.

Las concentraciones de hierro en músculo de peces fue mayor en lisa con 14.28 mg/kg; la pintadilla presentó la menor concentración con 5.11 mg/kg. La concentración de hierro en músculo de la concha navaja "pico de pato" fue de 29.7 mg/kg, normalmente los bivalvos filtradores acumulan metales pesados ya que filtran grandes cantidades de agua y su metabolismo no los puede excretar fácilmente.

Al igual que en los otros metales, la concentración de Fe en hígado fue mucho mayor que en músculo. El valor más alto fue encontrado en hígado de cabrilla con 288.20 mg/kg.

organismos acuáticos en la zona de Sechura, 2012.

Hierro (Fe)

350.00
300.00
250.00
200.00
150.00
100.00

Músculo

5.11

TRAMBOYO PINTADILLA

Músculo

6.16

PINTADILLA

Hígado

85.14

Músculo

7.85

CABRILLA

Hígado

288.20

Figura 3.4.3.2-36. Concentración de hierro en músculo e hígado en organismos acuáticos en la zona de Sechura, 2012.

Fuente: BISA, 2012

■ Hierro (Fe)

50.00

Músculo

LISA

14.28

Músculo

NAVAJA

29.70

Músculo

7.84

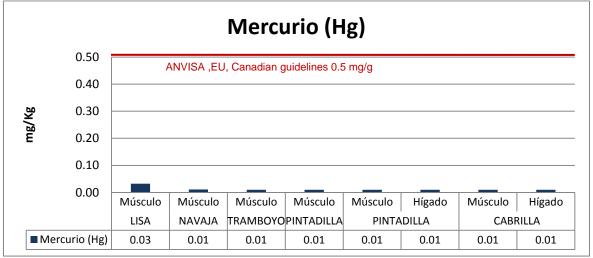
Manganeso (Mn)

El manganeso es uno de los tres elementos trazas tóxicos esenciales, lo cual significa quees necesario para la supervivencia de los humanos, pero que es también tóxico cuando está presente en elevadas concentraciones en los humanos.

Los valores de Mn en músculo de peces variaron 0.05 mg/kg en la "cabrilla" hasta 0.22 mg/kg en "lisa". En el caso de Mn en hígado, la"cabrilla" presentó una concentración de 1.59 mg/kg. El bivalvo *Tagelus dombeii* "pico de pato" presentó una concentración de1.2 mg/kg.

Manganeso (Mn) 1.80 1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0.00 Músculo Músculo Músculo Músculo Músculo Músculo Hígado Hígado LISA NAVAJA TRAMBOYO PINTADILLA **PINTADILLA CABRILLA** 0.05 ■ Manganeso (Mn) 1.59 0.22 0.19 1.19

Figura 3.4.3.2-37. Concentración de manganeso en músculo e hígado en organismos acuáticos en la zona de Sechura, 2012.


Fuente: BISA, 2012

Mercurio (Hg)

El mercurio es más biodisponible como metil mercurio que como mercurio inorgánico. La concentración de mercurio está normada por Canadian Food Inspection Agencyl, ANVISA-, European Union, el valor máximo es de 0.5 mg/kg, En la zona de estudio ninguna especie alcanzó dicho límite, ni en músculo, ni en hígado. En muchas muestras el valor de Hg fue menor al límite de detección <0.01. El mayor valor registrado fue de 0.03mg/kg en músculo de "lisa". Este pez de hábitos alimenticios asociados a fondos blandos, por tomar su alimento del

fango donde se acumula los metales pesados, se encuentra más expuesto a absorber metales asociados a las partículas del sedimento.

Figura 3.4.3.2-38. Concentración de mercurio en músculo e hígado en organismos acuáticos en la zona de Sechura, 2012.

Fuente: BISA, 2012

Níquel (Ni)

Los valores de Níquel se compararon con World Health Organization (WHO). 1991. Environmental health criteria: Nickel. (1 mg/kg). En la zona de estudio los valores de Ni en músculo de cabrilla y pintadilla fueron menores al límite de detección (<0,04mg/kg). En el caso de músculo del bivalvo "pico de pato" el valor fue de 0.11 mg/kg. En caso del hígado la pintadilla fue el único que registró un valor por encima del límite de detección (0.31 mg/kg).

Níquel (Ni) 1.00 WHO 1mg/g 0.80 0.60 mg/Kg 0.40 0.20 0.00 Músculo Músculo Músculo Hígado Músculo Músculo Músculo Hígado LISA NAVAJA TRAMBOYO PINTADILLA **PINTADILLA CABRILLA** ■ Níquel (Ni) 0.05 0.11 0.04 0.05 0.04 0.31 0.04 0.04

Figura 3.4.3.2-39. Concentración de níquel en músculo e hígado en organismos acuáticos en la zona de Sechura, 2012.

Fuente: BISA, 2012

Plomo (Pb)

La mayor parte del plomo en el ambiente marino se une con los sedimentos (constituyen un sumidero de plomo en el ambiente marino) y partículas en suspensión, reduciendo su disponibilidad para los organismos. El transporte de plomo en los estuarios y las aguas costeras está estrechamente vinculado con el movimiento de las partículas.

Estadios juveniles de peces son más susceptibles al plomo que los adultos o los huevos. Los síntomas típicos de intoxicación por plomo incluyen deformidad espinal y el ennegrecimiento de la región caudal. El límite máximo tóxico para el plomo inorgánico se ha determinado para varias especies bajo diferentes condiciones y los resultados varían entre 0,04 mg/L a 0,198 mg/L. La toxicidad aguda de plomo es altamente dependiente de la presencia de otros iones en solución, y la medición del plomo disuelto en los ensayos de toxicidad es esencial para un resultado realista. Los compuestos orgánicos de plomo son más tóxicos para los peces que las sales de plomo inorgánicos (OMS 1995).

El plomo se acumula en los sedimentos y pueden representar un peligro para los organismos habitantes de los sedimentos con concentraciones superiores a 30,2 mg kg-1, de acuerdo con las directrices canadienses provisionales calidad de los sedimentos marinos.

La absorción y la acumulación de plomo por organismos acuáticos es influenciada por diversos factores ambientales, tales como temperatura, salinidad y pH, así como el contenido de ácido húmico y ácido algínico. La absorción de plomo por los peces alcanza el equilibrio sólo después de varias semanas de exposición. El plomo se acumula principalmente en branquias, hígado, riñón y hueso. Los huevos de peces muestran un aumento de los niveles de concentración de plomo con mayor exposición, y hay indicios de que el plomo está presente en la superficie del huevo, pero no se acumula en el embrión.

En los mariscos, la concentración de plomo es superior en la cáscara rica en calcio que en el tejido blando. Las concentraciones de plomo en algunos peces marinos son más altas en las branquias y la piel que en otros tejidos. Los niveles de plomo en hígado aumentan significativamente con la edad (WHO 1995).

Los límites máximos de concentración de plomo varían según ANVISA y FAO/WHO es de 2 mg/kg. La Canadian Food Inspection Agency fija un valor de 0.5 mg/kg y la European Union, 0.3 mg/kg.

La máxima concentración de plomo se registró en la pintadilla y la lisa con 0.05 mg/kg, valores que se encuentran por debajo de los límites de los estándares internacionales. En hígado se registró una mayor concentración en pintadilla (0.52 mg/kg).

Plomo (Pb) 1.00 0.80 0.60 Unión Europea 0.3 mg/g 0.40 0.20 0.00 Músculo Músculo Músculo Músculo Músculo Hígado Músculo Hígado LISA TRAMBOYO PINTADILLA **PINTADILLA CABRILLA** NAVAJA ■ Plomo (Pb) 0.02 0.02 0.02 0.02 0.05 0.52 0.03 0.10

Figura 3.4.3.2-40. Concentración de plomo en músculo e hígado en organismos acuáticos en la zona de Sechura, 2012.

Fuente: BISA, 2012

Selenio (Se)

El selenio (Se) es un micronutriente esencial, forma las selenoproteínas, también actúa en el catabolismo hormonal, sistema inmunológico, la fertilidad, la reproducción y el metabolismo muscular (Brown, 2001) y, si se produce a altas concentraciones, es considerado como un agente tóxico (Lall, 1995).

El pescado, contiene concentraciones más altas de selenio respecto a otros tipos de carne, por lo que se considera como la mayor fuente de Se en la dieta (Lall, 1995).

De acuerdo con resultados de estudios encontrados por Bertelli y Monzanie en 2001, los niveles de Se en peces variaron desde 0.073 mg/kg en la "perca" (pez de agua dulce) hasta 0.734 mg/kg en el "atún".

En la zona de estudio de Bayóvar los valores de selenio tuvieron un máximo de 0.03 mg/kg y estando la concentración de este metal en varias de las especies analizadas por debajo del límite de detección. La "pintadilla" presentó la mayor concentración de Se en hígado (0.2 mg/kg).

El comportamiento de mayores concentraciones en hígado que en el músculo se ha documentado en el Ártico; en *Sebastes marinus* la concentración de Se fue 4.87 mg/kg mientras que en *Clupea harengus* la concentración fue 3.26 mg/kg (Stange 1996) El hígado por procesos metabólicos concentra más que el tejido muscular.

Selenio (Se) 0.25 0.20 0.15 0.10 0.05 0.00 Músculo Músculo Músculo Músculo Músculo Hígado Músculo Hígado LISA NAVAJA TRAMBOYO PINTADILLA **PINTADILLA** CABRILLA ■ Selenio (Se) 0.02 0.02 0.02 0.02 0.02 0.03 0.20 0.02

Figura 3.4.3.2-41. Concentración de selenio en músculo e hígado en organismos acuáticos en la zona de Sechura, 2012.

Fuente: BISA, 2012

Zinc (Zn)

El zinc se usa para proteger el hierro y acero de las embarcaciones, en aleaciones de fundición a presión y en baterías. Puede introducirse al mar a través de fuentes naturales o antropogénicos (aguas residuales e industriales). La concentración de Zn en músculo de peces en Bayóvar varió desde 4.87 mg/kg en la "cabrilla" hasta 8.65 mg/kg en músculo de "lisa". El bivalvo *Tagelus dombeii* presentó una concentración de Zn de 19.13 mg/kg. La "pintadilla" presentó la mayor concentración en hígado con 95.4 mg/kg.

En el Mar Rojo la concentración observada de Zn en músculo observado en el mar rojo osciló de 1.9mg/kg en *Thalassorna sp.* a 35 mg/kg en *Abudefduf saxatilis*. La concentración en el hígado fue más alta con valores de 45.2 a 137.0 mg/kg

(Ahmad H. Abu 2008). Similares valores se han reportado en peces de la barrera de coral en Australia y en peces de la melanesia en el Océano Pacífico. Los valores reportados en la zona de estudio se encuentran dentro de los rangos en encontrados en el Mar Rojo y en otras partes del mundo.

Zinc (Zn) 120.00 100.00 80.00 60.00 40.00 20.00 0.00 Músculo Hígado Hígado Músculo Músculo Músculo Músculo Músculo LISA TRAMBOYO PINTADILLA **CABRILLA** NAVAJA **PINTADILLA** ■ Zinc (Zn) 8.65 19.13 5.83 6.63 7.85 95.40 4.87 35.61

Figura 3.4.3.2-42. Concentración de zinc en músculo e hígado en organismos acuáticos en la zona de Sechura, 2012.

Fuente: BISA, 2012

3.4.3.2.3.5 Conclusiones

- Las concentraciones de metales pesados en peces se encontraron por debajo de los estándares internacionales.
- La concentración de metales en hígado fue mayor que en el músculo, esto es un proceso natural y se explica que el hígado como parte de los procesos metabólicos y de excreción concentra más metales que el músculo.
- La concentración de metales pesados en el bivalvo Tagelus dombeii fue en la mayoría de muestras superior a la encontrada en músculo de peces. Los bivalvos filtran gran cantidad de agua y su metabolismo no les permite excreta los metales con facilidad.

3.4.3.2.3.6 Bibliografía

- Abu Hilal, A.H. and N.S. Ismail, 2008. Heavy metals in eleven common species of fish from the gulf of Aqaba, red sea. Jordan J. Biol. Sci., 1: 13-18
- Albert Lilia, A. (1997). Introducción a la toxicología ambiental. Centro Panamericano de Ecología Humana y Salud, División de Salud y Ambiente, Organización Panamericana de la Salud, Organización Mundial de la Salud y Secretaría de Ecología. Metepec, Estado de México, México
- Brown, K. M.; Arthur, J. R. 2001. Selenium, selenoproteins and human health: a review. Public Health Nutrition, v. 4, n. 2B, p. 593-599.
- Eisler, R. 1986. Chromium hazards to fish, wildlife, and invertebrates: A synoptic review. Biological Report 85(1.6). Patuxent Wildlife Research Center, U.S. Fish and Wildlife Service, Laurel, 38 pp.
- Hall, LW; Sott, MC; Killen, WD. 1998. "Ecological risk assessment of copper and cadmium in surface waters of Chesapeake Bay Watershed". Environmental Toxicology and Chemistry, vol 17, no 6, pp. 1172-1189.
- European Union. 2008. Commission regulation (EC) No 629/2008 del 2 de
 Julio que enmienda el Reglamento de la Comisión (CE) No 1881/2006
- Forster, U. & G. T. W. Whittmann. 1983. Metal Pollution in the Aquatic Environment. Springer-Verlag, Berlin. 486 p.
- García Jesús, 2002, Estado Actual de la Contaminación por Metales Pesados y Pesticidas Organoclorados en el parque Natural Monfrague. Universidad de Extremadura. Facultad de Medicina y Sanidad Ambiental.
- Jakimska,A; Konieczka,P; Skóra, K y Namiésnik J. 2011 Bioaccumulation of metals in tissues of marine animals, Part II Metal Accumulation in animal tissues. Poland. Journal Environment Vol 20, N5. Pag. 127-{1146}
- LALL, S. P.1995.Macro and trace elements in fish and shellfish. In: RUITER,
 A. (Ed.). Fish and fishery products: composition, nutritive properties and stability. Wallingford: CAB International, 1995. p. 187-213. (cap. 6)
- Lenihan, J. y W.W. Fletcher. (1977). The chemical environment. En: Environment and man. Blackie Glasgow and London. Vol. 6

- Melgar, MJ; Pérez, M; García, MA; Alonso, J; Mígue. 1977. "Toxicity and accumulation profiles in rainbow trout (Oncorrhynchus mykiss) after short-term exposure to cadmium". *Veterinary and Human Toxicology, 39 (2), pp 79-83.*
- Navarro, Jorge M; Clasing, Elena; Lardies, Marco y Stead, Robert A. Feeding behavior of the infaunal bivalve Tagelus dombeii (Lamarck, 1818). Suspension vs. deposit feeding. Rev. biol. mar. oceanogr. 2008, vol.43, n.3, pp. 599-605. ISSN 0718-1957.
- Nauen, C.C. 1983. Compilation of legal limits for hazardous substances in fish and fishery products. Food and Agriculture Organization of the United Nations, New York, 102 pp.
- Nicola, R.M., R. Branchflower & D. Pierce. 1987. Chemical contaminants in bottomfish. J. Environ. Health, 49: 342–347.
- Pacyna, J.M., J. Munch, J. Alcamo and S. Anderberg, 1991. Emission trends
 of heavy metals in Europe. In: Proc. Int. Conf. on Heavy Metals in the
 Environment, Edinburgh, Scotland.
- Plessi, M.,Bertelli, D., and Monzani, A. (2001) Mercury and selenium content in selected seafood. Journal of Food Composition and Analysis, 14: 461-467.
- Robinson, J; Avenant-Oldewage, A. 1997. "Chromium, copper, iron and manganese bioaccumulation in some organs and tissues of Oreochromis mossambicus from the lower OlifantsRiver, inside the Kruger National Park".
 Water SA, vol 23, nº4: 387-403.
- FAO/WHO 2012. Food standards programme codex committee on contaminants in foods, sixth session, Maastricht, The Netherlands,26-30 march 2012.
- Bordajandi, L.R.; Gómez, G.; Abad, E.; Rivera, J.; Fernandez-Baston, M.D.; Blasco, J.; González, M.J.; 2004. Survey of persistent organochlorine contaminants (PCBs, PCDD/Fs, and PAHs), heavy metals (Cu, Cd, Zn, Pb, and Hg), and arsenic in food samples from Huelva (Spain): Levels and health implications. Journal of Agricultural and Food Chemistry, 52(4):992-1001.
- Bordajandi, L.R.; Martin. I.; Abad. E.; Rivera. J.; Gonzalez, M.J.; 2006. Organochlorine compounds (PCBs, PCDDs and PCDFs) in seafish and

- seafood from the Spanish Atlantic southwest coast. Chemosphere, 64(9):1450-1457.
- Wren, CD; Harris, S; Harttrup, N. 1995. "Ecotoxicology of Mercury and Cadmium" cap 17 del libro "Handbook of Ecotoxicology" aut. David J. Hoffman, Barnett A. Rattner, G. Allen Burton, Jr y John Cairns, Jr. CRC press, Inc.
- Swartenbroux, F.; Angelidis, M.; Aulne, M.; Bartkevics, V.; Benedicto, J.; Besada, V.; Bignert, A.; Bitterhof, A.; Kallikainen, A.; Hoogenboom, R.; Jorhem, L.; Jud, M.; Law, R.; Licht Cederberg, D.; McGovern, E.; Miniero, R.; Schneider, R.; Velikova, V.; Verstraete, F.; Vinas, L.; Vlad, S. 2010. Marine Strategy Framework Directive. Task Group 9. Contaminants in fish and other seafood.. JRC Scientific and Technical Report. EUR 24339 -2010.
- Stange, K., A. Maage and J. Klungsøyr, 1996. Contaminants in fish and sediments in the North Atlantic Ocean. NMR Report Tema: Nord 1996: 522.
 Nordic Council of Ministers, Copenhagen, Denmark. 79p.
- Usero, J.; Morillo, J.; Gracia, I.; 2005. Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere, 59:1175-1181.
- Stange, K., A. Maage and J. Klungsøyr, 1996. Contaminants in fish and sediments in the North Atlantic Ocean. NMR Report Tema: Nord 1996: 522.
 Nordic Council of Ministers, Copenhagen, Denmark. 79p
- Zetina-Rejón, M. J., F. Arreguín-Sánchez & E. A. Chávez. 2003. Trophic structure and flows of energy in the Huizache-Caimanero lagoon complex on the Pacific coast of Mexico. Estuarine Coastal and Shelf Science 57: 803-815.

3.4.3.2.4 Recursos Pesqueros y Pesquerías

3.4.3.2.4.1. Introducción

El mar peruano forma parte del Gran Ecosistema de la Corriente de Humboldt (GECH). Como la mayoría de los ecosistemas ubicados en los márgenes occidentales de los continentes, se caracteriza por la presencia de una gran corriente que fluye en dirección al Ecuador (Corriente Peruana o de Humboldt), presentando un intenso afloramiento generando altos niveles de productividad que mantienen importantes poblaciones de peces. A lo largo del mar peruano, los afloramientos ocurren en áreas localizadas. En los veranos, los núcleos de afloramiento más importantes ocurren en los grados 9°, 12° y 15° S, y durante los inviernos en los grados 5°, 7°, 9°, 12° y 14-16° S.

El volumen de agua aflorada ha sido estimado en 1014 m³/año y la concentración de nitrato en 25 μg-at/L. Este afloramiento resulta en una excepcional, pero altamente variable, nivel de producción primaria (producción nueva potencial ~844 gC/m2/año). Tal nivel de producción y un conjunto de características peculiares como la baja turbulencia y reducido transporte hacia fuera del mar permiten al ecosistema marino peruano mantener grandes poblaciones de peces.

La estacionalidad de la dinámica física, química y biológica del mar peruano es interrumpida por la ocurrencia de eventos El Niño, que se presentan entre dos a siete años, según la intensidad en la que se presentan y pueden ser débil, moderado, fuerte o extraordinario. El principal impacto de El Niño en el mar peruano es la intromisión de aguas oceánicas cálidas, la profundización de la termoclina y el afloramiento de aguas pobres en nutrientes. De acuerdo a las características particulares de cada evento El Niño, las aguas que se entrometen pueden ser ecuatoriales-superficiales o subtropicales-superficiales, y el patrón geográfico de intromisión no es regular.

De acuerdo a la duración e intensidad del evento, las especies asociadas a aguas frías y ricas como la anchoveta pueden experimentar una dramática mortalidad, tienden a distribuirse de manera más profunda y cercana a la costa y pueden desplazarse hacia el sur siguiendo aguas más frías. Por otro lado, el área de distribución de especies relacionada a aguas cálidas, como la samasa o perico, se extiende hacia el sur mientras su disponibilidad se incrementa.

En un contexto más amplio, también se han podido identificar fluctuaciones físicas y biológicas de larga escala. Varias variables ambientales como la temperatura del aire y de los océanos, el dióxido de carbono atmosférico, los desembarques de anchoveta y sardina, así como la productividad del ecosistema oceánico también han variado desde un ciclo frío (régimen de anchoveta) hasta un ciclo cálido (régimen de sardina), cada uno con una prevalencia cercana de 25 años.

Se ha sugerido que el primer régimen puede haber ocurrido desde 1950 hasta 1975 y desde fines de la década de 1990 hasta la actualidad. Este se ha caracterizado, entre otros, por anomalías de temperatura negativas, incrementos en la producción de plancton e incrementos en las áreas de distribución y desove de anchoveta. El segundo régimen puede haber ocurrido desde 1975 hasta mediados de la década de1990, este régimen ha sido asociado a flujos de aguas oceánicas cálidas hacia la costa y a una drástica disminución del área de distribución de las aguas costeras frías (que son las que habita la anchoveta). Esto produjo una predominancia de la sardina al tomar ventaja de las condiciones adversas para la anchoveta. Debido a su similaridad con los eventos El Niño y La Niña, estos eventos de larga escala han sido denominados coloquialmente como El Viejo y La Vieja (Chávez et al., 2003).

El mar peruano es considerado como el más productivo del mundo, como resultado de la alta productividad, el norte del Sistema de la Corriente de Humboldt (SCH) frente al Perú produce más peces por unidad de área que cualquier otra región oceánica del mundo; representando menos del 0.1% de la

superficie mundial de los océanos y produce alrededor del 10% de la captura mundial de peces marinos (Chávez et al., 2008). El ecosistema marino peruano está conformado por tres subsistemas que caracterizan tres tipos de recursos: pelágicos, demersales y costeros.

El subsistema pelágico se caracteriza por la dominancia de aguas frías y ricas en nutrientes. Los peces pelágicos (peces que habitan la parte superficial de la columna de agua) son principalmente explotados por la flota cerquera o de boliche, y proveen cerca del 95% de los desembarques totales de peces marinos en el Perú. Las especies más importantes son la anchoveta, sardina, jurel y caballa (Bouchon et al., 1999). Destacan también por su abundancia la pota, vicinguerria, samasa y camotillo.

El subsistema demersal se caracteriza por la presencia de una corriente subsuperficial ecuatorial denominada Corriente de Cromwell. Las especies demersales (especies asociadas al fondo marino) son principalmente explotadas por la flota de arrastre de fondo. Las principales especies demersales son la merluza, bereche, cabrilla, coco y falso volador.

El subsistema costero está limitado a la franja de las 5 millas náuticas de la costa. Este subsistema está dominado no solo por peces sino también por una importante diversidad y biomasa de invertebrados. Los recursos costeros son principalmente capturados por la flota artesanal. Las especies más importantes son la cojinova, lisa, machete y lorna. La concha de abanico, son los principales invertebrados.

Frente al litoral de la región Piura, la presencia de una de las principales áreas de afloramiento costero ha permitido la disponibilidad de anchoveta, principalmente entre los grados 05° y 06°S. Generando el desarrollo de la pesquería esta especie en esta región; teniendo a Paita, Parachique y Bayovar como puertos de desembarque. La flota industrial de cerco está constituida por: Flota Industrial -

tradicional de Acero con un rango de capacidad de bodega entre 110 hasta 800 m3 y la Flota Industrial de Madera conocida como "vikingos" con capacidad de bodega que fluctúa entre los 33 hasta 110 m3.

3.4.3.2.4.2 Área de estudio

En la Bahía de Sechura, que abarca desde Punta Gobernador por el norte hasta Punta Aguja por el sur, se localizan 12 caletas: Playa Casita, San Pedro, San Pablo, Chullillachi, Palo Parado, Matacaballo, Constante, Las Delicias, Parachique, Bocana, y Puerto Rico. De las cuales, son importantes, por los volúmenes de desembarques, las caletas de Matacaballo, Las Delicias, Parachique y Puerto Rico.

En la bahía, operan embarcaciones de mayor y menor escala o artesanales; las de mayor escala, se dedican a la pesca industrial, son unidades de acero o de madera, orientadas principalmente a la captura de anchoveta, mientras que las embarcaciones de menor escala o artesanales desembarcan una diversidad de recursos pesqueros, entre peces e invertebrados marinos.

La información pesquera corresponde a las estadísticas de la pesquería industrial pelágica de la Bahía de Sechura (Región Piura), entre los años 2000 hasta 2011. Teniendo como principales puertos de desembarques a Bayóvar y Parachique; que son lugares donde se encuentran instalados plantas pesqueras destinadas a la elaboración de Harina y Aceite de Pescado (Consumo Humano Indirecto C.H.I.), siendo la anchoveta el principal recurso utilizado como materia prima para el desarrollo de esta importante actividad económica.

Los volúmenes de desembarques de la actividad pesquera artesanal comprenden los años 2010, 2011 y primer trimestre del 2012.

3.4.3.2.4.3 Resultados

3.4.3.2.4.3.1 Desembarques de principales recursos pesqueros

a) Desembarques de pesquería industrial - anchoveta

La accesibilidad y disponibilidad del recurso anchoveta frente a la bahía de Sechura, así como en la Isla Lobos de Tierra y Lobos de Afuera, genera una importante actividad extractiva llevada a cabo por la flota industrial que utilizan redes de cerco de diferentes dimensiones, en función a la capacidad de bodega de cada embarcación, estas redes pueden variar entre 220 brazas hasta 550 brazas de longitud aproximadamente, con tamaño de malla de 13 mm.

Los desembarques de anchoveta para el C.H.I. en los puertos de Bayóvar y Parachique representan el 60% de los desembarques totales de la región Piura; siendo el Puerto Paita otro punto importante de desembarque en la región.

Los registros de desembarques de anchoveta en el periodo comprendido entre los años 2000 al 2011 han fluctuado entre 629,634 t en el 2003 a 106,774 en el 2010. La variabilidad del ambiente marino ejerce una influencia directa en la distribución, concentración y disponibilidad de los recursos, principalmente la anchoveta. Lo cual se ve reflejado en los volúmenes de desembarques y en el esfuerzo desplegado por la flota de cerco. (Figura 3.4.3.2-44, Cuadro 3.4.3.2-27).

700000 629634 600000 484090 492182 500000 Desembarque (t) 400000 361035 349498 346479 295703 300000 258811 244719 200000 179532 106774 100000 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AÑOS

Figura 3.4.3.2-43. Desembarques de anchoveta en Bayóvar y Parachique (2000- 2011).

Fuente: www.imarpe.gob.pe - PRODUCE

En años normales se presentan los mayores desembarques, como los reportados en los años 2003 y 2004. La ocurrencia de eventos fríos tipo La Niña favorecen a la biomasa de la anchoveta (Bouchon y Peña, 2009), lo que se ve reflejado en las capturas como ocurrió en los años 2000 y 2007. La ocurrencia de eventos cálidos como el Niño de moderara intensidad, significaron un descenso en la capturas, pero sin llegar a ser considerables (2002, 2006 y 2010). Durante cuarto trimestre del 2009 el arribo de Ondas Kelvin y el inicio de un Niño débil produzco el desplazamiento de la anchoveta hacia el centro del litoral, generando una disminución de las capturas, principalmente en los últimos meses del año. En el 2010, la presencia de individuos juveniles, propició el cierre de áreas de pesca como medida de protección a la fracción juvenil de la población, aunado a la dispersión del recurso provocado por un escenario ligeramente frío, repercutiendo en la baja captura total anual. En el 2011 se incrementaron los desembarques, debido a la normalización del ambiente marino, principalmente durante la segunda temporada de pesca en los meses de noviembre y diciembre.

Cuadro 3.4.3.2-27. Desembarques (t) de anchoveta en la bahía Sechura durante el periodo 2000 y 2011 (Plantas pesqueras de Bayóvar y Parachique).

	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC	TOTAL
2000	0	0	104359	60382	66059	58024	89150	0	0	9958	27567	68591	484090
2001	45922	0	55378	78154	98696	19238	12640	0	52	2955	4932	31531	349498
2002	29003	0	7334	56259	67699	82938	36030	0	0	10610	52729	18433	361035
2003	0	0	54	103510	105443	96038	76495	0	0	79786	104765	63543	629634
2004	24964	0	0	128393	117935	121463	78830	21	0	67	8561	98628	578862
2005	0	0	0	45387	104692	97138	76916	0	0	0	143378	24672	492182
2006	0	0	12340	0	62245	104666	0	0	0	0	23805	41662	244719
2007	0	0	0	45381	34528	82535	0	0	0	0	102066	81969	346479
2008	0	0	0	10167	7626	95469	0	0	0	0	35249	31020	179532
2009	0	0	0	541	89672	54081	44759	0	0	0	16427	53331	258811
2010	5539	0	0	0	21808	78045	990	0	0	0	0	391	106774
2011	18388	0	0	21421	89803	27713	0	0	0	0	28872	109506	295703
TOTAL	123816	0	179465	549595	866206	917347	415809	21	52	103377	548354	623277	4327318
PROMEDIO MENSUAL	24763	0	35893	54959	72184	76446	51976	21	52	20675	49850	51940	

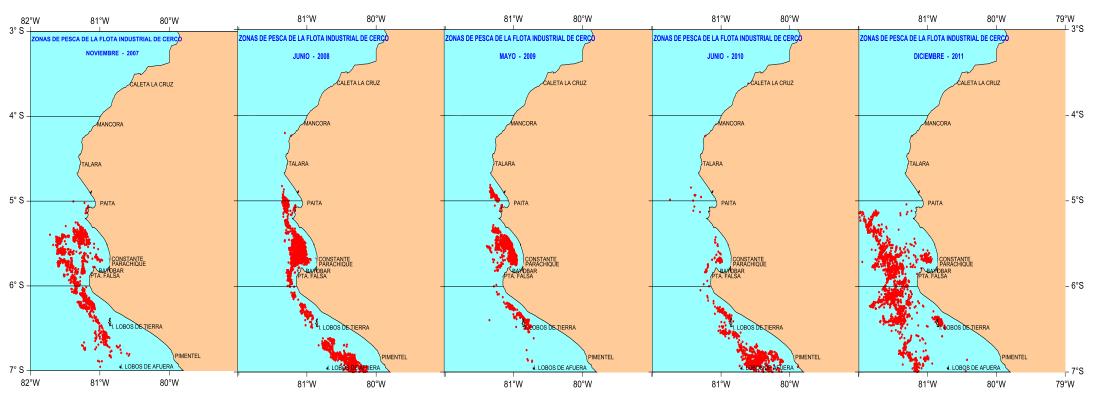
Los promedio mensuales de los desembarques de anchoveta (periodo 2000 - 2011) muestran que los mayores desembarques se presentaron durante los meses de junio y mayo, como parte de la primera temporada anual de pesca; así como en los meses de noviembre y diciembre, como parte de la segunda temporada anual de pesca. En los meses de febrero, agosto, setiembre el recurso se encuentra en periodo de veda reproductiva, por lo que la flota se encuentra paralizada. (Figura 3.4.3.2-44)

90000 76446 80000 72184 70000 60000 54959 Desembarque (t) 51976 51940 49850 50000 35893 40000 30000 24763 20675 20000 10000 0 0 0 0 ENE FEB MAR ABR MAY JUN JUL AGO SET ОСТ NOV DIC Meses

Figura 3.4.3.2-44. Promedio mensual de desembarques de anchoveta.

Bayóvar - Parachique (2000 - 2011).

Fuente: www.imarpe.gob.pe - PRODUCE


a.1) Distribución espacial de las capturas de anchoveta.

La distribución, concentración y disponibilidad espacial de anchoveta, variaron de acuerdo a las condiciones oceanográficas. Tomando en cuenta los meses con mayor volumen de desembarque en la jurisdicción de de los puertos Bayóvar y Parachique, la anchoveta se distribuyó latitudinalmente desde Paita (05° S) hasta la Isla Lobos de Afuera Tierra (07°'S) y longitudinalmente desde las 5 millas

náuticas (m.n.) hasta 50 m.n) de la costa. Se presentó importantes núcleos de concentración frente a la bahía de Sechura, isla Lobos de Tierra y la isla Lobos de Afuera.

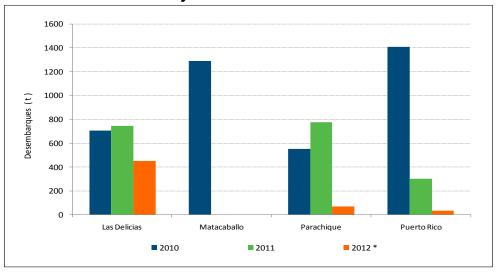
Durante el mes de mayo del 2009 se observa una menor área de distribución de las capturas, debido a la presencia de un escenario cálido, produciéndose una concentración de la anchoveta. Cuando las condiciones cálidas persisten la anchoveta migra hacia el sur en busca de mejores condiciones. En el mes de diciembre del 2011, se observó mayor dispersión en las capturas de anchoveta, llegando hasta las 50 m.n.

Figura 3.4.3.2-45. Zonas de Pesca de la flota Industrial de cerco. 2007- 2010.

Fuente: www.imarpe.gob.pe - PRODUCE

A. Desembarques de la pesquería artesanal

Por sus volúmenes de desembarques, destacan las caletas de Matacaballo, Las Delicias, Parachique y Puerto Rico. Los desembarques de recursos pesqueros demersales y costeros fluctuaron entre 558 t, en el primer trimestre del 2012 a 3057 t, en el año 2010. Los mayores desembarques ocurrieron en la caleta Las Delicias con 1657 t, seguida de la caleta Puerto Rico con 1757 t. (Cuadro 3.4.3.2-28, Figura 3.4.3.2-46).


Cuadro 3.4.3.2-28. Desembarques (t) de las principales caletas de la bahía de Sechura- entre el año 2010 y el primer trimestre 2012.

Caletas	Años						
Caletas	2010 2011 2012 *		2012 *	Total			
Las Delicias	458	747	452	1657			
Matacaballo	458			458			
Parachique	724	777	70	1571			
Puerto Rico	1417	304	36	1757			
Total	3057	1828	558	5443			

^{*} I Trimestre

Fuente: IMARPE-PRODUCE

Figura 3.4.3.2-46. Desembarques por caletas en la Bahía de Sechura entre el año 2010 y Primer trimestre del 2012.

Fuente: IMARPE-PRODUCE

B. Desembarques de especies ícticas demersales y costeros.

Se desembarcaron 30 especies de peces demersales y costeros, destacando por sus volumenes en los años 2010, 2011 y primer trimestre del 2012, las especies *Cynoscion analis* "cachema", con 2 102 t; seguido de *Paralonchurus peruanus* "coco" con 763 t, *Mugil cephalus* "lisa" con 754 t, *Ophichthus reminger* "anguila" 546 t y, *Trachinotus paitensis* " pampano" 287. (Cuadro 3.4.3.2-29, Figura 3.4.3.2-48).

Cuadro 3.4.3.2-29. Desembarques (t) de las principales especies demersales y costeras en la Bahía de Sechura entre el 2010 y el primer trimestre del 2012.

Nombre común	Nombre científico	2010	2011	2012 (I Trimestre)	Total
Cachema	Cynoscion analis	1180	702	220	2102
Coco	Paralonchurus peruanus	385	219	160	763
Lisa	Mugil cephalus	362	321	71	754
Anguila	Ophichthus reminger	303	238	4	546
Pampano	Trachinotus paitensis	287			287
Cabinza	Isacia conceptionis	189	47	3	239
Cabrilla perela	Paralabrax callaensis	104			104
Cabrilla	Paralabrax humeralis	64	196	39	299
Chiri	Peprilus medius	59	31	34	124
Lorna	Sciaena deliciosa	40	18	1	59
Cojinova	Seriolela violácea	32	13		45
Chula misho	Menticirrhus paitensis	23		19	42
Pejerrey	Odonthestes regia regia		30		30
Otros		31	14	6	51
	Total	3057	1828	558	5443

Fuente: IMARPE-PRODUCE

1200
1000
800
200
Cathera Caro Lisa Retain Particular Retain Cathera Persia Cathera California Cathera Cathera Caro Pres

Figura 3.4.3.2-47. Desembarques de especies demersales y costeros en la Bahía de Sechura. 2010 - Primer trimestre del 2012.

Fuente: IMARPE-PRODUCE

C. Desembarques de invertrebarados marinos

En la bahía de Sechura se desarrolla una gran actividad extractiva de invertebrados marinos, sustentada principalmente por *Argopecten purpuratus*" Concha de abanico", *Dosidicus gigas* "pota", *Stramonita chocolata* "caracol negro", " la concha navaja" *Dagelus dombeii* y *Bursa ventricosa* "caracol gringo"

Los desembarques de "concha de abanico", presentaron fluctuaciones, se incremento a partir del año 2002 con 1 587 t. Esto fue favorecido por la presencia de un evento el Niño de magnitud débil; en el 2004, ante el incremento del esfuerzo pesquero, se llegó a realizar hasta 13 558 viajes con pesca, y ante la gran demanda del mercado los desembarques aumentaron, reportándose 6 105 t. En el 2005, se observó una disminución de los desembarques, como resultado de las condiciones climáticas que no favorecieron el reclutamiento del recurso.

En el 2011 desembarcaron 66 037 t de concha de abanico, correspondiendo la mayor parte del desembarque a la caleta de Parachique con 65 922 t.

Los desembarques de "pota", se caracterizaron por su constante incremento variando desde 1 632 t en el año 2000 hasta 13 167 t en el 2004. Esta especie oceánica, es un recurso ocasional, que en los últimos años se viene capturando durante todo el año. Las fluctuaciones de los desembarques presentan relación directa con el esfuerzo pesquero desplegado ante la demanda del mercado. En el 2011 se desembarcaron 28 908 t de pota, correspondiendo 17 438 t a la caleta de Puerto Rico.

Otros recursos invertebrados importante en la bahía de Sechura es el "caracol negro", que aunque en los últimos años ha presentado una disminución progresiva en los desembarques, sigue siendo una especie que compite por el espacio con la concha de abanico, y que se ha visto favorecida con la adjudicación e implementación de áreas de repoblamiento en la bahía. También destaca el invertebrado *Bursa ventricosa*" caracol gringo, que presenta un incremento progresivo en los desembarques, como consecuencia del aumento del esfuerzo de pesca y de la flota dedicada a este recurso, ante la gran demanda en el mercado. (Cuadro 3.4.3.2-30 y 3.4.3.2-31).

Por los volúmenes de desembarques, destacan las caletas de Las Delicias, Parachique y Puerto Rico. Los desembarques de recursos invertebrados en el 2011 fluctuaron entre 71 474 t en Parachique y 2 663 en Las Delicias.

Cuadro 3.4.3.2-30. Desembarques (t) de invertebrados marinos por caleta y semestre en la bahía de Sechura durante el año 2011.

Caleta/ Trimestre	I trimestre	II trimestre	III Trimestre	IV Trimestre	Total
Parachique	39103	1022	18379	12971	71474
Puerto Rico	697	829	10062	11746	23334
Las Delicias	240	37	2327	60	2663
Total	40039	1887	30768	24777	97471

Fuente : IMARPE-PRODUCE

Cuadro 3.4.3.2-31. Desembarques (t) de invertebrados marinos por especies en la bahía de Sechura durante el año 2011.

Nombre común	Nombre científico	Parachiqu e	Las Delicias	Pto. Rico	Total
Concha de abanico	Argopecten purpuratus	65922	2	113	66037
Pota	Dosidicus gigas	7765	3705	17438	28908
Concha Navaja	Tagelus dombeii	897	-	92	989
Caracol gringo	Bursa ventricosa	470	2	133	604
Caracol babosa	Sinum cymba	520	-	-	520
Pulpo	Octopus mimus	70	1	29	100
Caracol negro	Stramonita chocolate	95	-	3	99
Calamar	Loligo gahi	35	-	40	74
Langostino café	Farfantepenaeus californiensis	-	54	3	56
Pepino de mar	Holoturia sp.	-	-	43	43
Vongole	Transennella pannosa	29	-	-	29
Caracol piña	Hexaplex brassica	11	-	-	12
Almeja	Gari solida/Semele corrugata	0.2	-	-	0.2
	75814	3764	17893	97471	

D. Área de extracción de la pesquería artesanal

La bahía de Sechura es un área tradicional de la pesquería artesanal, en la que se emplean artes de pesca tales como pinta, cortina, buceo con compresora y en forma no autorizada boliche y arrastre dentro de las 5 millas náuticas de la costa.

Las principales áreas de pesca se ubican frente a las localidades de Chulliyachi, Matacaballo, Constante, Las Delicias, Parachique, Los Barrancos, Vichayo, Playa Blanca, Puerto Rico y Punta Falsa.

El esfuerzo pesquero por zona de pesca, desplegado en la bahía de Sechura, varió entre 1 viaje con pesca hasta más 5 mil viajes. Las zonas con más de 5 mil viajes se ubicaron entre Puerto Rico y Vichayo. Mientras que las zonas con viajes comprendidos entre 1001 y 5000 que se presentaron en una mayor área de distribución entre Puerto Rico y Matacaballo. La mayor actividad extractiva se presentó dentro de las 5 millas náuticas, que es un área reservada exclusivamente para la actividad artesanal. (Figura 3.4.3.2-48).

81.2° W 81.1° W 81° W 80.9° W 80.8° W 80.7° W 5.5° S-5.5° S San Pedro 5 millas náuticas, Chulliyachi 5.6° S--5.6° S Matacaballo Constante 5.7° S -5.7° S as Delicias Punta Aguia Estuario de Virrila 5.8° S -5.8° S **Ruerto Rico** laya Blanca Vichayo -5.9° S 5.9° S 1 - 100 Viajes 101 - 1000 Viajes 1001 - 5000 Viajes > 5000 Viale: 6°S -6° S -81.1° W -81° W -81.2° W -80.9° W -80.8° W -80.7° W

Figura 3.4.3.2-48. Áreas de pesca de la pesquería artesanal en la bahía de Sechura.

Fuente: IMARPE

3.4.3.2.4.4 Conclusiones

- Los mayores desembarques de anchoveta en la bahía de sechura durante el periodo 2000 - 2011, se registró en el 2003 con 629,634 t.
- En promedio los Puertos de Bayóvar y Parachique aportan el 60 % de los desembarques totales de anchoveta en la Región Piura.
- La anchoveta está destinadas principalmente a la elaboración de Harina y aceite de Pescado. (Consumo Humano Indirecto).
- En los meses de mayo y junio se presentan los mayores desembarques de anchoveta (Primera temporada de pesca) y como en noviembre y diciembre (segunda temporada de pesca); mientras que en los meses de febrero, agosto y setiembre la anchoveta se encuentra en período de veda reproductiva.
- La anchoveta se distribuye entre Paita hasta la isla Lobos de Afuera, en el sentido latitudinal. Longitudinalmente se distribuye desde las 5 m.n hasta 50 m.n de la costa.
- De acuerdo a los volúmenes de los desembarques de recursos ícticos demersales y costeros, destacan la cachema, el coco, la lisa y la anguila.
- En el 2011 los desembarques de los recursos invertebrados marinos fue de 97 471 t. Correspondiendo los mayores desembarques a: concha de abanico, pota, caracol negro y caracol gringo.
- Las zonas de pesca con mayor esfuerzo de pesca se presentan entre Puerto Rico y Vichayo. La mayor actividad extractiva se presentó dentro de las 5 millas de la costa que es la zona destinada de manera exclusiva a la pesquería artesanal.

3.4.3.2.4.5 Bibliografía

- Bouchon, M., M. Ñiquen, S. Cahuin, y J.D. Valdez. 1999. La Pesquería de cerco en la costa peruana durante 1998. Inf. Prog. Inst. Mar. Perú N°97 Callao-Perú: 44 pp.
- Bouchon, M., C. Peña. 2009. Impactos de los eventos La Niña en la pesquería peruana. Inf. Inst. Mar Perú. Vol.35 (3):193-198.
- Chavez, F.P., Ryan, J., Lluch-Cota, S.E. and Niquen, M., 2003. From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299, 217-221.
- Chávez, F.P., Bertrand, A., Guevara-Carrasco, R., Soler, P., Csirke, J. 2008.
 El sistema del norte de la corriente de Humboldt, historia breve. Estatus actual y una visión hacia el futuro. Progress in Oceanography, 79: 3-15.
- IMARPE 2007 Estudio de la Línea Base Ambiental de la bahía de Sechura.
 116pp.

3.4.4 Especies y Hábitat Sensibles

3.4.4.1 Flora

3.4.4.1.1 Especies de importancia

Del total de especies de plantas presentes en el área de estudio, seis son de especial importancia, cinco están incluidas en el Decreto Supremo 043-2006-AG que enlista a las especies vegetales en categorías de amenaza nacional y una es endémica del norte del Perú, es decir su distribución está restringida a un territorio limitado (cuadro 3.4.4-1).

Las especies consideradas amenazadas por la legislación nacional son en su mayoría de la familia Fabaceae y son árboles. La única especie herbácea es *Batis marítima* "vidrio" (figura 3.4.4-1) una hierba suculenta (que llega subarbusto suculento) que puede ser una planta postrada o erecta, tiene sexos separados y con frecuencia forma masas densas en los alrededores de los estuarios y en orillas de playas marinas, tiene hojas suculentas, de color verde amarillento; sus inflorescencias son espigas que nacen por encima de las hojas; las masculinas tetragonales, y las femeninas ovoides, ambas con flores reducidas, y el fruto es de tipo drupáceo, con aspecto esponjoso. Está considerada en la categoría de amenaza "en peligro crítico" (CR) por la afectación a su hábitat. En el área de estudio se encontró bastante frecuente en la vegetación hidrófita de playa marina (VHPM) y de ribera de ríos y lagunas (VHRR).

El "sapote" *Colicodendron scabridum*, es la otra especie considerada en la categoría de "en peligro crítico" (CR). El sapote es un árbol o arbusto, muchas veces postrado, presenta tallo compacto con la corteza fisurado-agrietada, presenta múltiples ramas y una copa amplia (figura 3.4.4-2). Sus hojas alternas, son de láminas oblongo-lanceoladas, coriáceas, lustrosas en el haz y densamente pubescente en el envés. Las flores son bisexuales, dispuestas en racimos presentan cuatro pétalos libres, estambres numerosos (cerca de 40), presenta un

típico ginóforo de hasta 7 cm de longitud. El fruto es bacciforme cuando tierno, cápsula cuando maduro, oblongo o angostamente ovoide, carnoso, contiene semillas reniformes, cubiertas por un arilo pulposo anaranjado al estado fresco y corchoso al estado seco, pubescentes, numerosas (cerca de 100). Presenta el alto nivel de amenaza debido principalmente a la explotación de su madera para fines artesanales y como leña y carbón (Rodríguez et al. 2007). En el área de estudio se encontró en los bosques secos con predominio de sapote (BSPS) y con predominio de algarrobo (BSPA) (cuadro 3.4.4-2). Esta especie es una buena candidata para programas de conservación que aseguren disminuir el impacto de las actividades del proyecto.

Las otras tres especies consideradas en categoría de amenaza son árboles de la familia Fabaceae, de las cuales sobresale *Prosopis pallida* "algarrobo" por el peligro que presenta ("vulnerable" (VU)) debido al uso intenso como fuente para carbón. Las otras dos especies son del género *Acacia* (cuadro 3.4.4-2)) y están en una categoría de amenaza menor ("cerca al peligro" (NT)).

Cuadro 3.4.4-1. Especies de plantas de especial importancia presentes en el área de estudio

Familia	Nombre científico	Nombre	DS 043-	Endémi	Unidades
Faiiilla	Nombre Clentinico	común	2006-AG	cas	Unidades
BATACEAE	Batis maritima L.	vidrio	CR		VHPM, VHRR
CAPPARACEAE	Colicodendron scabridum (Kunth) Seem.	sapote	CR		BSPA, BSPS
	Acacia aroma Gillies ex Hook. & Arn.	espino	NT		BSPA
FABACEAE	Acacia macracantha Humb. et Bonpl. ex Willd.	espino	NT		VHRR
	Prosopis pallida (Humb. & Bonpl. ex Willd.) Kunth	algarrobo	VU		BSPA, BSPS, VHRR
POACEAE	Aristida chiclayense Tovar			CA,LA,L L,PI	BSPA

Fuente: BISA, 2012

La única especie endémica nacional presente en el área de estudio es la Poaceae (=gramínea) *Aristida chiclayense*, una hierba graminoide anual, densamente ramificada desde la base y con cañas que alcanzan los 15 cm de alto (León et al. 2006). Se presenta en suelos arenosos de la costa norte en zonas con lluvias estacionales (Tovar 1993). En el área de estudio se registró en el bosque seco con predominio de algarrobos, mientras que ha sido registrada en la costa de los departamentos de Piura (PI), Lambayeque (LA) y La Libertad (LL), así como en valles secos de Cajamarca (CA, cuadro 3.4.4-1).

en el area de estudio.

Figura 3.4.4-1. Batis marítima "vidrio", especie en peligro crítico registrada en el área de estudio.

Fuente: BISA, 2012

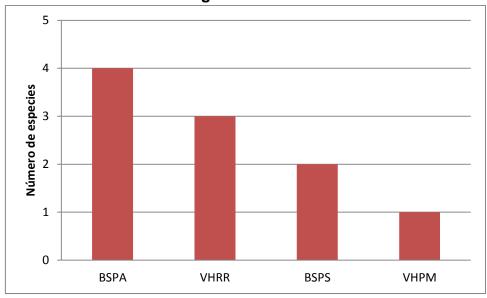

Los bosques secos con predominio de algarrobos (BSPA) resultaron las unidades de vegetación con mayor número de especies de importancia, seguidos de la vegetación halófita de ribera de ríos o lagunas (VHRR) (figura 3.4.4-3).

Figura 3.4.4-2. Flor de Colicodendron scabridum "sapote", especie de árbol en peligro crítico registrada en el área de estudio.

Fuente: BISA, 2012

Figura 3.4.4-3. Número de especies de plantas de importancia registradas en las unidades de vegetación en el área de estudio.

Fuente: BISA, 2012

3.4.4.2 Aves

3.4.4.2.1 Especies de aves de importancia para la conservación

De las especies de aves registradas para el área de estudio, destacan un grupo de importancia en conservación. La mayoría de las especies de importancia en conservación fueron registradas en el área marina de la zona de estudio.

3.4.4.2.2 Especies protegidas por la legislación nacional

La avifauna peruana fue estudiada y documentada sistemáticamente por colectores y naturalistas desde el siglo XIX, hasta el siglo XXI en donde *A Field Guide to the Birds of Peru* registra 1800 especies (Clements & Shany 2001), Birds of Peru (Schulenberg *et al.* 2010) refieren de modo conservador un promedio de en 1800 especies de aves para Perú y hasta 1839 (Plenge 2012) siendo por mucho el 855axón de vertebrados mayores más diversos en nuestro país.

Con la consolidación de la Red List de la Unión Internacional de la Conservación de la Naturaleza (IUCN) en 1963 las especies de aves del mundo y las peruanas pudieron ser categorizadas en su nivel de amenaza, siendo las listas desde 1994 hasta la actualidad de amplia consulta. Desde el 2004 las categorías de amenaza de fauna peruana, incluyendo las aves han sido determinadas según las recomendaciones de IUCN. Especies de aves peruanas están consignadas en los Apéndices del Convenio CITES desde 1973 y en la Convención CMS desde 1979. Más recientemente las aves sensibles a los cambios de su hábitat, de importancia en conservación y investigación y Biomas fueron tratados en *Neotropical Birds Ecology and Conservation* (Stotz et al 1996), aves indicadoras de Áreas de Endemismo de aves (EBAs) en *Endemic Bird Areas of the World: priorities for Biodiversity Conservation* (Stattersfield et al 1998), las aves endémicas nacionales son reportadas en *A Field Guide to the Birds of Peru* (Clements & Shany 2001), *Birds of Peru* (Schulenberg et al. 2010) y Aves de Perú de Plenge (2012).

El estado peruano se interesó tempranamente en la conservación de las aves peruanas, de modo tal que la historia de la conservación de la avifauna silvestre en el Perú sólo es un poco más joven que las estrategias de conservación mundiales; parte del proceso es bien referido en El libro rojo de la fauna silvestre del Perú (Pulido 1991). Sin embargo, los primeros esfuerzos nacionales en este campo estuvieron ligeramente inclinados a la protección de especies de aves grandes, conspicuas, simbólicas y basados en la opinión de especialistas más que en parámetros estandarizados. En el 2003 las autoridades de la Dirección de Conservación de la Biodiversidad Forestal y de Fauna Silvestre de INRENA toman la decisión de actualizar la lista de especies de fauna amenazada peruana para estar de la mano con los principios y criterios usados a nivel mundial, principalmente por la IUCN, así desde septiembre de 2004 un nuevo conjunto de especies de aves están protegidas a nivel nacional (Decreto Supremo 034-2004-AG). La moderna visión de conservación de las aves peruanas está comprometida con la conservación de su diversidad en casi todos sus niveles y requiere para ello el mantenimiento de los procesos ecológicos en los que las aves participan.

Desde el 2010 se ha trabajado en la actualización de lista de aves amenazadas para Perú; sin embargo el Decreto Supremo 034-2004-AG continúa siendo el vigente en el periodo de trabajo de campo de este proyecto.

Es importante reiterar que los criterios empleados en la determinación de las especies de aves actualmente protegidas por el estado peruano no difieren marcadamente de los criterios empleados por las instancias internacionales, de modo que actualmente las categorías y sus representaciones abreviadas son similares e equivalentes; con la particularidad que para la definición de esas especies ahora protegidas, se recogió la información existente en relación al estado de las poblaciones peruanas, siendo entonces sus categorías más semejantes a las de IUCN cuando las especies están sólo o principalmente

presentes en Perú y algo más diferentes en especies de aves de distribución geográfica más amplia.

Durante la evaluación ornitológica realizada en Sechura y Virrilá en el 2012 se observó 15 especies de ave amenazadas según la legislación nacional vigente (D.S. 034-2004-AG). Una especie se encuentra en la categoría "en peligro crítico" (CR), el petrel de las Galápagos *Pterodroma phaeopygia*. Cinco especies se encuentran en la categoría de "en peligro" (EN), cinco también en la categoría de "vulnerable" (VU) y cuatro en la categoría de Menor Preocupación (NT) (Cuadro 3.4.4-2).

Cuadro 3.4.4-2. Lista de especies de aves incluidas en categorías de amenaza según la legislación nacional (DS 043-2006-AG)

Especies	Nombre común	Categoría DS 043-2006-AG
Spheniscus humboldti	Pingüino de Humboldt	EN
Phoebastria irrorata	Albatros de las Galápagos	VU
Pterodroma phaeopygia	Petrel de las Galápagos	CR
Oceanodroma markhami	Golondrina de Mar de Markham	VU
Pelecanus thagus	Pelícano peruano	EN
Sula variegata	Piquero peruano	EN
Phalacrocorax bougainvillii	Cormorán Guanay	EN
Platalea ajaja	Espátula rosada	EN
Phoenicopterus chilensis	Flamenco Chileno	NT
Falco peregrinus	Halcón Peregrino	NT
Sterna hirundinacea	Gaviotín Sudamericano	VU
Sternula lorata	Gaviotín Peruano	VU
Larosterna inca	Gaviotín Zarcillo	VU
Aratinga erythrogenys	Cotorra de Cabeza Roja	NT
Tumbezia salvini	Pitajo de Tumbes	NT

Fuente: Bisa, 2012

3.4.4.2.3 Especies protegidas en alguna categoría de conservación internacional

De las especies de aves registradas en el área de estudio, un interesante grupo están comprendidas en algún parámetro de importancia en conservación internacional relevante, al que se suman especies que son importantes en parámetros de importancia en conservación menos concretos como ser altamente sensible a los cambios del hábitat, prioridad de conservación urgente o alta, prioridad de investigación alta o ser especies migrantes o estar protegidas en los apéndices de la Convención de especies migratorias.

En la presente evaluación ornitológica se ha encontrado un total de 16 especies de aves de interés en conservación bajo los parámetros internacionales más generalmente aceptados (Cuadro 3.4.3-3 Los parámetros considerados son los de la Unión Internacional para la Conservación de la Naturaleza (IUCN), considerándose los datos actualizados al 2012. Dos especies están en la categoría de "en peligro crítico" (CR), el albatros de las Galápagos *Phoebastria irrorata* y el petrel de las Galápago *Pterodroma phaeopygia*. Una especie esta considera "en peligro" (EN), el gaviotín peruano *Sternura lorata*, cuatro en la categoría "vulnerable" (VU) y nueva en "casi amenazada" (NT) (Cuadro 3.4.3-3).

Cuadro 3.4.4-3. Lista de especies de aves incluidas en categorías de amenaza internacional según la IUCN.

Especies	Nombre común	IUCN 2012
Spheniscus humboldti	Pingüino de Humboldt	VU
Phoebastria irrorata	Albatros de las Galápagos	CR
Pterodroma phaeopygia	Petrel de las Galápagos	CR
Procellaria aequinoctialis	Petrel de Mentón Blanco	VU
Puffinus creatopus	Pardela de Pata Rosada	VU
Puffinus bulleri	Pardela de Buller	VU
Puffinus griseus	Pardela Oscura	NT

Especies	Nombre común	IUCN 2012
Pelecanus thagus	Pelícano peruano	NT
Phalacrocorax bougainvillii	Cormorán Guanay	NT
Phoenicopterus chilensis	Flamenco Chileno	NT
Calidris pusila	Playerito Semipalmado	NT
Thalasseus elegans	Gaviotín Elegante	NT
Sternula lorata	Gaviotín Peruano	EN
Larosterna inca	Gaviotin Zarcillo	NT
Aratinga erythrogenys	Cotorra de Cabeza Roja	NT
Tumbezia salvini	Pitajo de Tumbes	NT

Un total de 21 especies de aves registradas en el área están consideradas en los Apéndices I o II de la Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestre (CITES), dos especies pertenecen al Apéndice I, el pingüino de Humboldt *Spheniscus humboldti* y el halcón peregrino *Falco peregrinus*. Otras 19 especies están consideradas dentro del Apéndice II (cuadro 3.4.4-4).

Cuadro 3.4.4-4. Lista de especies de aves incluidas en categorías de amenaza internacional según la IUCN.

Especie	Nombre común	CITES
Spheniscus humboldti	Pingüino de Humboldt	I
Circus cinereus	Aguilucho Cenizo	II
Buteogallus meridionalis	Gavilán Sabanero	II
Parabuteo unicinctus	Gavilán Mixto	II
Geranoaetus melanoleucus	Aguilucho de Pecho Negro	II
Geranoaetus polyosoma	Aguilucho Variable	II
Caracara cheriway	Caracara Crestado	II
Falco sparverius	Cernícalo Americano	II
Falco femoralis	Halcón Aplomado	II
Falco peregrinus	Halcón Peregrino	I
Aratinga erythrogenys	Cotorra de Cabeza Roja	II
Forpus coelestis	Periquito Esmeralda	II

Especie	Nombre común	CITES
Tyto alba	Lechuza de Campanario	II
Glaucidium peruanum	Lechucita Peruana	II
Athene cunicularia	Lechuza Terrestre	II
Asio flammeus	Lechuza de Oreja Corta	II
Amazilia amazilia	Colibrí de Vientre Rufo	II
Rhodopis vesper	Colibrí de Oasis	П
Myrtis fanny	Estrellita de Collar Púrpura	II
Myrmia micrura	Estrellita de Cola Corta	II
Megaceryle torquata	Martín Pescador Grande	II

3.4.4.2.4 Especies migratorias, congregatorias y apéndice de la CMS

Durante la presente evaluación se registró en el área de estudio 34 especies migratorias (Cuadro 3.4.4-16), una migratoria altitudinal, el Ibis de la Puna (Yanavico) *Plegadis ridgwayi*, seis Australes (es decir que se reproducen en el extremo sur de Sudamérica) y el mayor grupo (27 especies) fueron migratorias Boreales (es decir que se reproducen en América del Norte), estas migratorias llegan en el verano austral a nuestro territorio patrio (Cuadro 3.4.4-5).

Cuadro 3.4.4-5. Lista de especies de aves migratorias registradas en el área de estudio.

Familia	Especie	Nombre común	Migratoria
Procellaridae	Procellaria aequinoctialis	Petrel de Mentón Blanco	Austral
Procellaridae	Puffinus creatopus	Pardela de Pata Rosada	Austral
Procellaridae	Puffinus bulleri	Pardela de Buller	Austral
Procellaridae	Puffinus griseus	Pardela Oscura	Austral
Threskiornithidae	Plegadis ridgwayi	Ibis de la Puna (Yanavico)	Altitudinal
Anatidae	Anas discors	Pato de Ala Azul	Boreal
Falconidae	Falco peregrinus	Halcón Peregrino	Boreal
Charadriidae	Pluvialis dominica	Chorlo Dorado Americano	Boreal
Charadriidae	Pluvialis squatarola	Chorlo gris	Boreal
Charadriidae	Charadrius semipalmatus	Chorlo semipalmado	Boreal
Charadriidae	Oreopholus ruficollis	Chorlo de Campo	Austral
Scolopacidae	Limnodromus griseus	Agujeta de Pico Corto	Boreal

Familia	Especie	Nombre común	Migratoria
Scolopacidae	Limosa haemastica	Aguja de Mar	Boreal
Scolopacidae	Numenius phaeopus	Zarapito Trinador	Boreal
Scolopacidae	Tringa melanoleuca	Playero Pata Amarilla Mayor	Boreal
Scolopacidae	Tringa flavipes	Playero Pata Amarilla Menor	Boreal
Scolopacidae	Tringa solitaria	Playero Solitario	Boreal
Scolopacidae	Actitis macularius	Playero Coleador	Boreal
Scolopacidae	Calidris canutus	Playero de Pecho Rufo	Boreal
Scolopacidae	Calidris alba	Playero arenero	Boreal
Scolopacidae	Calidris pusila	Playerito Semipalmado	Boreal
Scolopacidae	Calidris mauri	Playerito occidental	Boreal
Scolopacidae	Calidris minutilla	Playerito Menudo	Boreal
Scolopacidae	Calidris bairdii	Playerito de Baird	Boreal
Scolopacidae	Phalaropus tricolor	Faláropo Tricolor	Boreal
Scolopacidae	Phalaropus lobatus	Faláropo de Pico Fino	Boreal
Stercorariidae	Stercorarius pomarinus	Salteador Pomarino	Boreal
Laridae	Leucophaeus modestus	Gaviota gris	Austral
Laridae	Leucophaeus pipixcan	Gaviota de Franklin	Boreal
Laridae	Xema sabini	Gaviota de Sabine	Boreal
Laridae	Thalasseus elegans	Gaviotín Elegante	Boreal
Laridae	Thalasseus sandvicensis	Gaviotín de Pata Negra	Boreal
Laridae	Thalasseus maximus	Gaviotín Real	Boreal
Laridae	Sterna hirundo	Gaviotín Común	Boreal

3.4.4.2.5 Especies incluidas en la convención de especies migratorias

Las especies migratorias al requerir para su sobrevivencia de por lo menos dos lugares distantes en los cuales cumplir su ciclo vital, se convirtieron en un símbolo de la necesidad de unir esfuerzos internacionales en pro de la conservación, creándose en Bonn en 1979 la Convención de especies Migratorias (Convention on Migratory Species cuyas ciclas son CMS). Los países como el nuestro sumados a este esfuerzo no sólo asumen el compromiso de velar por la conservación de las especies migratorias, sino también de los hábitats que ellas requieren. En el área de estudio durante todo el periodo de evaluación se

registraron 24 especies migratorias protegida en la Convención de Especies Migratorias (CMS). Cinco especies en el Apéndice I y 19 en el Apéndice II de la CMS (Cuadro 3.4.4-6).

Cuadro 3.4.4-6. Lista de especies de aves migratorias registradas en el área de estudio.

Especie	Nombre común	CMS 2012
Spheniscus humboldti	Pingüino de Humboldt	I
Pterodroma phaeopygia	Petrel de las Galápagos	ı
Procellaria aequinoctialis	Petrel de Mentón Blanco	II
Puffinus creatopus	Pardela de Pata Rosada	I
Anas bahamensis	Pato Gargantillo	II
Anas discors	Pato de Ala Azul	II
Anas cyanoptera	Pato Colorado	II
Coragyps atratus	Gallinazo de Cabeza Negra	II
Cathartes aura	Gallinazo de Cabeza Roja	II
Pandion haliaetus	Águila pescadora	II
Circus cinereus	Aguilucho Cenizo	II
Buteogallus meridionalis	Gavilán Sabanero	II
Parabuteo unicinctus	Gavilán Mixto	II
Geranoaetus melanoleucus	Aguilucho de Pecho Negro	II
Geranoaetus polyosoma	Aguilucho Variable	II
Caracara cheriway	Caracara Crestado	II
Falco sparverius	Cernícalo Americano	II
Falco femoralis	Halcón Aplomado	II
Falco peregrinus	Halcón Peregrino	II
Calidris canutus	Playero de Pecho Rufo	I
Thalasseus sandvicensis	Gaviotín de Pata Negra	II
Thalasseus maximus	Gaviotín Real	II
Sterna hirundo	Gaviotín Común	II
Sternula lorata	Gaviotín Peruano	I

Fuente: Bisa, 2012

3.4.4.2.6 Especies congregatorias

Las poblaciones de aves acuáticas son de gran interés en relación a los Sitios RAMSAR (Blanco & Carbonell 2001). La Convención sobre los Humedales fue firmada en la ciudad Ramsar, en Irán en 1971, siendo un tratado intergubernamental que vela por la conservación y uso racional de los humedales en todo el mundo. Esta Convención promueve acciones nacionales y de cooperación internacional, con el fin de lograr un desarrollo sostenible de los humedales en todo el mundo. El Perú es uno de los 119 países adheridos a esta Convención y existen ya varios humedales reconocidos y protegidos por ésta. Los humedales presentes en el área de estudio comprenden algunas lagunas en muy variados estados de conservación.

La evaluación de cuantas especies de aves acuáticas hay y cuan abundantes son sus poblaciones, es de gran interés, ya que los Sitios Ramsar son definidos en el mundo también por la preocupación en la conservación de las poblaciones de aves de este tipo (Blanco & Carbonell 2001). Dos de los criterios que orientan la definición de los sitios Ramsar (el No. 5 y el No. 6) toman en consideración estas especies de aves. El criterio No. 5 señala que un humedal deberá ser considerado de importancia internacional si sustenta de manera regular una población de 20,000 o más aves acuáticas. El criterio No. 6 hace referencia a que un humedal deberá ser considerado de importancia internacional si sustenta de manera regular el 1% de los individuos de una población de una especie o subespecie de ave acuática.

Muchas de las aves acuáticas son de hábitos solitarios o viven en pequeños grupos o parejas, sin embargo la mayoría de ellas suelen tener hábitos congregatorios, es decir se encuentran en un lugar en gran número. En el área de estudio se registraron 69 especies congregatorias, sólo una terrestre *Thinocorus orbignyanus* y el resto acuáticas (Cuadro 3.4.4-7).

La Convención Ramsar ha establecido valores poblacionales a tomar en cuenta para las aves de este tipo en todo el mundo, así los valores que aparecen en el cuadro 3.4.4-7 corresponden a los valores que esta Convención estableció para la región comprendida desde México al norte hasta el extremo sur de América; los valores equivalen al 1% de la población biogeográfica de esta región (Wetlands International 2002).

En relación a este aspecto, tres preguntas son de mayor interés: I) ¿existe en el lugar evaluado una población de 20,000 o más aves acuáticas?, II) ¿existe algún humedal evaluado que contenga al menos el 1% de los individuos de una población de una especie acuática y III) ¿cuál es el lugar o ambiente que reúne el mayor número de especies de aves acuáticas, migratorias bajo protección de la Convención de Especies Migratorias Definitivamente, el Estuario de Virrilá está en los límites de estos parámetros y muy probablemente dentro de poco sea definido como un nuevo sitio Ramsar para el Perú.

Cuadro 3.4.4-7. Lista de especies de aves Congregatorias registradas en el área de estudio.

Especie	Nombre común	1% Población biogeográfica
Pelecanus thagus	Pelícano peruano	10,000
Phalacrocorax brasilianus	Cormorán Neotropical	20,000
Phalacrocorax bougainvillii	Cormorán Guanay	20,000
Ardea cocoi	Garza Cuca	10,000
Ardea alba	Garza Grande	20,000
Egretta thula	Garcita Blanca	20,000
Bubulcus ibis	Garcita Bueyera	20,000
Nycticorax nycticorax	Huaco Común	7,180 ver, 7730 inv
Eudocimus albus	Corocoro Blanco	1,000
Plegadis ridgwayi	Ibis de la Puna (Yanavico)	130
Platalea ajaja	Espátula rosada	1,655
Phoenicopterus chilensis	Flamenco Chileno	2,000
Anas bahamensis	Pato Gargantillo	10,000
Anas discors	Pato de Ala Azul	20,000

Especie	Nombre común	1% Población biogeográfica
Anas cyanoptera	Pato Colorado	2,100 ver, 2880 inv
Pardirallus sanguinolentus	Rascón Plomizo	20,000
Gallinula galeata	Polla de Agua Común	20,000
Fulica ardesiaca	Gallareta Andina	2,500
Haematopus ater	Ostrero negruzco	1,180
Haematopus palliatus	Ostrero americano	500
Himantopus mexicanus	Cigüeñuela de Cuello Negro	20,000
Pluvialis dominica	Chorlo Dorado Americano	1,500
Pluvialis squatarola	Chorlo gris	1,300
Charadrius semipalmatus	Chorlo semipalmado	900
Charadrius wilsonia	Chorlo de Pico Grueso	360
Charadrius vociferus	Chorlo Gritón	350
Charadrius nivosus	Chorlo Nevado	166
Charadrius collaris	Chorlo Acollarado	350
Oreopholus ruficollis	Chorlo de Campo	200
Limnodromus griseus	Agujeta de Pico Corto	1,725
Limosa haemastica	Aguja de Mar	500
Numenius phaeopus	Zarapito Trinador	430
Tringa melanoleuca	Playero Pata Amarilla Mayor	800
Tringa flavipes	Playero Pata Amarilla Menor	4,400
Tringa solitaria	Playero Solitario	1,500
Actitis macularius	Playero Coleador	2,000
Tringa semipalmata	Playero de Ala Blanca	1,185
Calidris canutus	Playero de Pecho Rufo	740
Calidris alba	Playero arenero	2,100
Calidris pusila	Playerito Semipalmado	20,000
Calidris mauri	Playerito occidental	20,000
Calidris minutilla	Playerito Menudo	4,200
Calidris fuscicollis	Playerito de Lomo Blanco	4,000
Calidris bairdii	Playerito de Baird	3,000
Phalaropus tricolor	Faláropo Tricolor	15,000
Phalaropus lobatus	Faláropo de Pico Fino	20,000
Thinocorus rumicivorus	Agachona Chica	10,600
Larus belcheri	Gaviota peruana	100
Leucophaeus modestus	Gaviota gris	250

Especie	Nombre común	1% Población biogeográfica
Chroicocephalus cirrocephalus	Gaviota de Capucha Gris	90
Leucophaeus atricilla	Gaviota Reidora	1,830 ver, 4230 inv
Leucophaeus pipixcan	Gaviota de Franklin	9,800
Xema sabini	Gaviota de Sabine	1,000
Gelochelidon nilotica	Gaviotín de Pico Negro	80 ver, 205 inv
Thalasseus elegans	Gaviotín Elegante	630
Thalasseus sandvicensis	Gaviotín de Pata Negra	1,260
Thalasseus maximus	Gaviotín Real	320 ver, 1600 inv
Sterna hirundinacea	Gaviotín Sudamericano	2,500
Sterna hirundo	Gaviotín Común	10 ver, 4500 inv
Sternula lorata	Gaviotín Peruano	150
Larosterna inca	Gaviotin Zarcillo	1,500
Rynchops niger	Rayador Negro	2,050

3.4.4.2.7 Aves de distribución restringida o endémica

Se ha realizado una revisión de la información de distribución sobre cada especie de la avifauna que figura en la lista de especies potenciales, considerando materiales como mapas disponibles de rango de distribución, base de datos de distribución acreditados (Natureserve, 2012) y otras fuentes importantes de información del rango de distribución de especies de aves.

El análisis de la distribución de las especies no solo han permitido identificas a las especies endémicas nacionales, sino otras dos categorías de aves de distribución restringida. Asi se han catalogado las especies registradas de acuerdo con los criterios de Áreas de Aves Endémicas [EBAs] según Endemic Bird Areas of the World Priorities for Biodiversity Conservation por BirdLife International importantes en la definición de las Áreas Importantes para la Conservación de las Aves en los Andes Tropicales [IBAs], considerados como sitios críticamente importantes a nivel mundial para las aves y la biodiversidad y los Biomas sensu Stotz et al. 1996 que también han sido considerados como áreas de distribución restringida.

3.4.4.2.8 Especies endémicas nacionales

Si bien la avifauna del Perú es rica y diversa, la mayoría de las especies presentes no son exclusivas de nuestro territorio, con la excepción de más de un centenar de especies cuyo rango de distribución espacial está contenido en su totalidad en nuestro país. Este grupo restringido de especies es llamado endémicas nacionales. Para el presente estudio han sido determinadas las aves según este criterio en Plenge 2012, Schulenberg et al., 2010 y Clements y Shany (2001). Durante este periodo de estudio se han registrado tres especies endémicas nacionales, el Minero Peruano Geositta peruviana, el Pitajo de Tumbes Tumbezia salvini y el Frigilo Cinéreo Piezorhina cinerea. La mayoría de especies que presentan una distribución restringida se comparten con el vecino país de Ecuador.

3.4.4.2.9 Áreas de endemismo de aves

Son 17 las especies de aves potenciales de distribución restringida a Áreas de endemismo de aves (EBAs) esperadas en este estudio (Cuadro 3.4.4-8). A pesar que la zona de estudio es pequeña, en ella pudieron hallarse aves de tres EBAs P045 Ecuador-Peru East Andes (17 especies), P048 Southern Central Andes (3) y P052 Peruvian high Andes (2).

Cuadro 3.4.4-8. Lista de especies de aves indicadoras de Áreas de aves endémicas (EBAs) registradas en el área de estudio.

Especie	Nombre común	EBAs
Aratinga erythrogenys	Cotorra de Cabeza Roja	045
Forpus coelestis	Periquito Esmeralda	P 045
Caprimulgus anthonyi	Chotacabras de Matorral	P 045,048
Myrmia micrura	Estrellita de Cola Corta	P 045
Geositta peruviana	Minero Peruano	P 045,052
Synallaxis stictothorax	Colaespina Acollarada	P 045,048
Thamnophilus bernardi	Batará Acollarado	P 045,048
Melanopareia elegans	Pecholuna Elegante	P 045
Myiopagis subplacens	Elainia del Pacífico	P 045

Especie	Nombre común	EBAs	
Tumbezia salvini	Pitajo de Tumbes	P 045	
Canthorchilus superciliars	Cucarachero Cejón	P 045	
Cyanocorax mystacalis	Urraca Coliblanca	P 045	
Piezorhina cinerea	Frigilo Cinéreo	P 045	
Sporophila simplex	Espiguero Simple	P 045,052	
Sicalis taczanowskii	Chirigüe Gargantiazufrada	P 045	
Rhynchospiza stolzmanni	Gorrión de Tumbes	P 045	
Icterus graceannae	Bolsero Filiblanco	P 045	

3.4.4.2.10 Biomasa

En el área de estudio son 25 las especies de aves (Cuadro 4.3.5.4-8) características de un Bioma o gran región zoogeográfica en América (sensu Stotz et al. 1996), en su mayoría (17 especies) pertenecientes al bioma Costa del Pacífico Ecuatorial (EPC), siete especies al bioma Pacífico Subtropical (STP) y una sola especie al bioma Andes Centrales (CAN) el Yanavico *Plegadis ridgwayi* (Cuadro 3.4.4-9).

Cuadro 3.4.4-9. Lista de especies de aves indicadoras de Biomas registradas en el área de estudio.

Especie	Especie Nombre común	
Spheniscus humboldti	Pingüino de Humboldt	STP
Phoebastria irrorata	Albatros de las Galápagos	EPC
Pterodroma phaeopygia	Petrel de las Galápagos	EPC
Oceanodroma markhami	Golondrina de Mar de Markham	STP
Oceanodroma hornbyi	Golondrina de Mar Acollarada	STP
Pelecanus thagus	Pelícano peruano	STP
Sula variegata	Piquero peruano	STP
Plegadis ridgwayi	Ibis de la Puna (Yanavico)	CAN
Leucophaeus modestus	Gaviota gris	STP
Larosterna inca	Gaviotin Zarcillo	STP
Aratinga erythrogenys	Cotorra de Cabeza Roja	EPC
Forpus coelestis	Periquito Esmeralda	EPC

Especie	Nombre común	Bioma
Myrmia micrura	Estrellita de Cola Corta	EPC
Furnarius leucopus	Hornero Patipálida	EPC
Synallaxis stictothorax	Colaespina Acollarada	EPC
Thamnophilus bernardi	Batará Acollarado	EPC
Melanopareia elegans	Pecholuna Elegante	EPC
Myiopagis subplacens	Elainia del Pacífico	EPC
Tumbezia salvini	Pitajo de Tumbes	EPC
Canthorchilus superciliars	Cucarachero Cejón	EPC
Cyanocorax mystacalis	Urraca Coliblanca	EPC
Piezorhina cinerea	Frigilo Cinéreo	EPC
Sicalis taczanowskii	Chirigüe Gargantiazufrada	EPC
Rhynchospiza stolzmanni	Gorrión de Tumbes	EPC
Icterus graceannae	Bolsero Filiblanco	EPC

3.4.4.2.11 Especies protegidas en otras categorias secundarias de conservación

En el mundo junto al crecimiento del progreso y explotación de los recursos naturales, creció también el interés del hombre por la protección del ambiente a través de indicadores de algún tipo. El estado de conservación de la avifauna se encuentra entre los indicadores más difundidos y antiguamente usados, por ellos en este grupo de vertebrados existe una amplia gama de criterios que son exclusivos al taxa. Para aves se han establecido con el tiempo algunos otros parámetros que bajo pautas detalladas y metodologías estandarizadas y más ampliamente sometidas a juicio científico se están usando, como las Áreas de endemismo de Aves (EBAs) y las especie consideradas indicadoras de un único bioma (BIOMA), empleadas en todo el mundo para la categorización del Programa de Áreas importantes para la Conservación de las Aves (IBAs: Important Bird Areas) conducido en el mundo por BirdLife. Sin embargo, otros parámetros creados para caracterizar a las aves neotropicales no se han difundido tanto como los anteriores y han quedo circunscritos a la avifauna de la

región neotropical. Son tres los parámetros propuestos por Stotz en su libro Neotropical Birds Ecology and Conservation (Stotz et al. 1996) que son la Sensibilidad a los cambios del hábitat, la Prioridad de conservación y la Prioridad de investigación. En el área de estudio tres especies presentaron alta prioridad de conservación (sensu Stotz et al. 1996), el Pingüino de Humboldt *Spheniscus humboldti*, la Golondrina de Mar de Markham *Oceanodroma markhami* y la Golondrina de Mar Acollarada *Oceanodroma hornbyi*. Dos especies están consideradas como de muy alta prioridad de investigación el Pingüino de Humboldt *Spheniscus humboldti* y la Estrellita de Collar Púrpura *Myrtis fanny*.

3.4.4.3 Herpetologia

3.4.4.3.1 Especies sensibles

El analisis de especies sensbiles se ah realizado tomando en cuenta lo considerado por las listas de conservacion de IUCN, CITES y el D.S. 034-2004-AG, de esta manera se tienen 3 especies en listas de conservación, todas lagartijas, dos de la familia Teiidae y una de la familia Tropiduridae. La lista roja de IUCN solo tiene en cuenta de todas las especies del área de estudio a la lagartija MIcrolophus peruvianus, no obstante, la tiene en cuenta como enuna categoria de bajo riesgo, es decir, no en una categoría de amenaza, debido probablemente a la amplia distribución de esta especie y a las poblaciones aparentemente saludables en cada punto de su ditribucion. La lagartija Dicrodon heterolepis es considerada en estado de VU por la lista nacional dada por el D.S. 034-2004-AG, debido a que a pesar de que su distribucion puede ser relativamente larga, es endémica de Perú y dicha distribución esta fragmentada debido a la alteración de su habitat, sobre todo por el crecimiento urbano dado en la region del pacífico peruano. La lagartija Callopistes flavipunctatus, considerada como Casi Amenazada por el D.S. 034-2004-AG y además es considerada en el apéndice II de CITES, esto debido a que se encuentra restringida a la region costera del norte de Perú (también habita la region costera

del sur de Ecuador), y es cazada regularmente por pobladores debido a hipoteticos perjuicios que podria causar en la crianza de aves de corral, pues la consideran peligrosa por sus habitos dieteticos, en los que puede predar aves, es cazada tmabien debido a que en algunos mercados clandestinos internacionales es apreciada como mascota, todas estas razones han ocasionado que deba ser considerada por estas listas, aunque no se ha corroborado aun el estado de sus poblaciones.

Cuadro 3.4.4-9. Especies sensibles del área de estudio.

	TAXA				
Familia	Especie	Nombre común	IUCN	CITES	DS 034- 2004-AG
TEIIDAE	Dicrodon heterolepis	Cañán			VU
	Callopistes flavipunctatus	Iguana negra		II	NT
TROPIDURIDAE	Microlophus peruvianus	Capón de las playas	LC		

Fuente: BISA, 2012

3.4.4.4 Mamíferos

3.4.4.4.1 Categorías de conservación

Una de las especies registradas se encuentran en categorías de conservación basadas en la lista de especies amenazadas de CITES.

3.4.4.4.2 Categorización Nacional (DS 034-2004-AG)

Esta categoría de conservación nacional se encarga de regular el uso de especies de fauna silvestre amenazada. Ninguna de las especies registradas se encuentra en esta categoría.

3.4.4.4.3 UICN (Red List of Threatened Species Version 2010.1.)

La lista roja de especies amenazadas de la IUCN, es la categoría de conservación internacional más importante para especies de animales y plantas amenazadas. Ninguna de las especies registradas se encuentra en esta categoría.

3.4.4.4.4 CITES (mayo, 2009)

La categoría de conservación CITES se encarga de regular la comercialización de especies que están o pueden estar en peligro de extinción si son comercializadas sin fiscalización. Una de las especies registradas se encuentra en esta categoría: *Otaria flavescens* "Lobo marino chusco" (Apéndice II).

3.4.4.4.5 Especies endémicas

No se registraron endémicas dentro del área de evaluación.